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FOREWORD

The Thirty-Fifth Conference on the Design of Experiments in Army
Research, Development and Testing had as its host the TRADOC Test
and Experimentation Command, Experimentation Center (TEC), Fort
Ord, California. This conference was planned for 18-20 October
1989, and was held in the Monterey Beach Hotel, Monterey, CA. The
earthquake on 17 October prevented several of the speakers from
attending this meeting; and while the power was off, problems arose
for many of the speakers. Dr. Marion Bryson, Director of TEC,
served as local host and conference coordinator. He and members of
his staff are to be commended for supplying innovative and
immediate solutions to many problems associated with the quake.
Without their support the conference would never have succeeded.

The Army Mathematics Steering Committee (AMSC) is the sponsor of
the Conference on the Design of Experiments. Members of this
committee would like to thank D. Hue McCoy, TRADOC Analysis
Command, for organizing the Special Session on "Statistical Issues
Related to Combat Modeling." The speakers were Hue McCoy, Bill
Baker (BRL), and Eugene Dutoit (Infantry School). This session
achieved its purpose of stimulating a dialogue between combat
modelers and the statistical community. The AMSC members feel that
the addresses by the principal speakers, as well as the contributed
papers by Army and academic personnel, also stimulated the
interchange of ideas among the scientists attending this meeting.
Noted below is the list of invited speakers selected by the Program
Committee:

Speaker and Affiliation Title of Address

Professor Robert Bechhofer An Appraisal of Several
Cornell University Multistage Selection

Procedures

Professor William J. Conover Latin Hypercube Sampling, a
Texas Tech University Way of Saving Computer Runs

Professor Gary Koch An Overview of Statistical
University of North Carolina Methods for Categorical Data
at Chapel Hill

Professor David W. Scott Statistical Data Analysis
Rice University

Another event associated with each of these conferences is a two-
day tutorial. This year, Ronald Hocking of Texas A&M University
presented a tutorial entitled "Analysis of Linear Models with
Unbalanced Data." It was held two days before the start of the
conference and was conducted in the TEC Protocol Building at Fort
Ord.
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As the master of ceremonies at the banquet and the recipient of the
Wilks Award last year, Dr. Marion Bryson had the honor of
announcing the winner of the ninth U.S. Army Wilks Award, Professor
Boyd Harshbarger. He was selected because of his research
endeavors, his promotional activities for Army applications, his
unending supply of speakers for these conferences, and his help in
numerous ways to carry the Army forward in many important
statistical areas. Because of ill health, Professor Harshbarger
wav unable to attend the conference. Dr. Douglas Tang,
representing the Army statistical community, accepted the award on
his behalf.

Members of the Army Mathematics Steering Committee would like to
thank the members of the Program Committee for guiding this
scientific conference, and to also thank the Mathematical Sciences
Division of the Army Research office for preparing the proceedings
of these meetings.

PROGRAM COMMITTEE

Carl Bates Robert Burge Francis Dressel
Eugene Dutoit Hue McCoy Carl Russell
Douglas Tang Malcolm Taylor Jerry Thomas

Henry Tingey
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AGENDA

THE THIRTY-FIFTH CONFERENCE.ON THE DESIGN OF EXPERIMENTS
IN ARMY RESEARCH, DEVELOPMENT, AND TESTING

18-20 October 1989

Host: TRADOC Test and Experimentation Command
Experimentation Center (TEC)
Fort Ord, California 93941-7000
Marion R. Bryson, Director

Location: Monterey Beach Hotel
2600 Sand Dunes Drive
Monterey, California 93940

Wednesday, 18 October 1989

0730 - 0900 REGISTRATION

0915 - 0930 CALLING THE CONFERENCE TO ORDER:

Marion R. Bryson, Director
TRADOC Test and Experimentation Command
Experimentation Center (TEC)

WELCOMING REMARKS

0930 - 1200 GENERAL SESSION I

"Chairperson: Marion R. Bryson, TRADOC rest and Experimentation
Command, Experimentation Center

0930 - 1030 KEYNOTE ADDRESS:

AN APPRAISAL OF SEVERAL MULTISTAGE SELECTION PROCEDURES
Robert Bechhofer, Cornell University

1030 - 1100 BREAK

1100 - 1200 STATISTICAL DATA ANALYSIS
David W. Scott, Rice University

1200 - 1330 LUNCH

vii



Wednesday (Conti nued)

1330 - 1600 CLINICAL SESSION A

Chairperson: Barry Bodt, U.S. Army Ballistic Res.arch
Laboratory

Panelists: William J. Conover, Texas Tech University
Jayaram Sethuraman, Florida State University
Nozer Singpurwalla, George Washington University

HAS VARIABILITY BEEN REDUCED?
Gary Aasheim, U.S. Army Armament, Munitions and Chemical
Command

WHICH DISTRIBUTION APPLIES?
Gary Aasheim, U.S. Army Armament, Mun!tions and Chemical
Command

1330 - 1500 TECHNICAL SESSION 1

Chairperson: Francis Dressel, U.S. Army Research Office

MODELING DEPENDENCE INDUCED BY COMMON ENVIRONMENTS
Mark A. Youngren, U.S. Army Concepts Analysis Agency

EVALUATION OF DESERT CAMOUFLAGE UNIFORMS BY GROUND OBSERVERS
George Anitole, Ronald L. Johnson, U.S. Army Belvoir
Research, Development and Engineering Center, and
Christopher Neubert, U.S. Army Materiel Command

ELIMINATING CALCULUS DEPENDENCY IN THE DERIVATION OF DODGE'S u
Richard M. Brugger, U.S. Army Armament, Munitions and
Chemical Command

HOW SHOULD ERROR ESTIMATES OF FIXED CAMERA CALIBRATION
CONSTANTS BE COMPUTED?

William S. Agee and Andrew C. Ellingson, U.S. Army White
Sands Missile Range

1500- 1530 BREAK
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Wednesday (Continued)

1530 - 1710 TECHNICAL SESSION 2

Chairperson: Malcolm Taylor, U.S. Army Ballistic Research
Laboratory

PROMOTING STATISTICAL LITERACY AND INTERACTION OF RESEARCHERS
AND STATISTICIANS

Emanuel Parzen, Texas A&M University

BAYESIAN INFERENCE FOR NONHOMOGENEOUS POISSON POINT PROCESSES
USING EXPERT OPINION AND DATA

Nozer 0. Singpurwalla, George Washington University

RANDOM MAPPINGS
Bernard Harris, University of Wisconsin-Madison

Thursday, 19 October 1989

0816 - 0945 APPLICATION SESSION

Chairperson: Carl Bates, U.S. Army Concepts Analysis Agency

HANDLING UNCERTAINTY IN EXPECTED VALUE MODELS
Mark A. Youngren, U.S. Army Concepts Analysis Agency

APPLICATION AND CALIBRATION OF A STOCHASTIC C3 COMBAT MODEL FOR
OUTER-AIR AND INNER-AIR BATTLES

Izhak Rubin, University of California at Los Angeles and
Israel Mayk, U.S. Army Communications and Electronics
Command

LOADING AND MATERIAL PROPERTY UNCERTAINTIES IN FINITE ELEMENT
ANALYSES FOR ORTHOPAEDICS

Shirish Chinchalkar and 0. L. Taylor, Cornell UJniversity
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Thursday (Continued)

0815 - 0945 TECHNICAL SESSION 3

Chairperson: Jock 0. Grynovicki, U.S. Army Human Engineering
Laboratory

NONNEGATIVE ESTIMATION OF VARIANCE COMPONENTS IN MIXED LINEAR
MODELS WITH TWO VARIANCE COMPONENTS I

Thomas Mathew, University of Maryland

NONNEGATIVE ESTIMATION OF VARIANCE COMPONENTS IN MIXED LINEAR
MODELS WITH TWO VARIANCE COMPONENTS II

Bimal Kumar Sinha, University of Maryland

NONPARAMETRIC INFERENCE FOR IMPERFECT REPAIR MODELS
Jayaram Sethuraman, Myles Hollander, and Brett Presnell,
Florida State University

0945 - 1015 BREAK

1015 - 1200 CLINICAL SESSION B

Chairperson: Carl Russell, U.S. Army Operational Test and
Evaluation Agency

Panelists: Robert Bechhofer, Cornell University
Bernard Harris, University of Wisconsin
Emanuel Parzen, Texas A&M University

APPLICATION OF A COMPOSITE DESIGN TO TEST A COMBAT SIMULATION
MODEL

Carl B. Bates, U.S. Army Concepts Analysis Agency

APPLICATION OF RESPONSE SURFACE METHOD TO RANDOM VIBRATION
Mircea Grigoriu, Cornell University

1015 - 1200 TECHNICAL SESSION 4

Chairperson: John Robert Burge, Walter Reed Army Institute of
Research

DISTRIBUTION THEORY FOR VARIANCE COMPONENT ESTIMATION
DIAGNOSTICS

Jock 0. Grynovicki, U.S. Army Human Engineering Laboratory
and John W. Green, University of Delaware
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Thursday (Continued)

TECHNICAL SESSION 4 (Continued)

NUMERICAL ESTIMATION OF THE PARAMETERS OF THE SOURCE DENSITY
FUNCTION

Charles E. Hall, Jr., U.S. Army Missile Command

THE HUNTER PROBLEM IN A RANDOM FIELD OF OBSCURING ELEMENTS
Shelemyahn Zacks and M. Yadin, State University of New York
at Binghamton

1200 - 1330 LUNCH

1330 - 1530 SPECIAL SESSION

Chairperson: D. Aue McCoy, U.S. Army TRADOC Analysis Command

STATISTICAL ISSUES RELATED TO COMBAT MODELING
D. Hue McCoy, U.S. Army TRADOC Analysis Command

A NONPARAMETRIC APPROACH TO THE VALIDATION 6F STOCHASTIC
SIMULATION MODELS

William E. Baker and Malcolm S. Taylor, U.S. Army Ballistic
Research Laboratory

SMALL SAMPLE TESTS OF SIGNIFICANCE IN SUPPORT OF COMBAT
MODELING

Eugene Dutoit, U.S. Army Infantry School

1530 - 1600 BREAK

1600 - 1700 GENERAL SESSION II

Chairperson: Ger3ld R. Andersen, U.S. Army Research Office

LATIN HYPERCUBE SAMPLING, A WAY OF SAVING COMPUTER RUNS
William J. Conover, Texas Tech University

1830 - 1930 CASH BAR

1930 - 2130 BANQUET AND PRESENTATION OF WILKS AWARD
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Friday, 21 October 19d9

0815 - 0946 TECHNICAL SESSION 5

Chairperson: William S. Agee, White Sands Missile Range

THE VARIANCE OF THE INTEGRATED PROCUREMENT PROBLEM VARIABLE -
A FRESH APPROACH

Barnard H. Bissinger, Pennsylvania State University

GRAPHICAL TOOLS FOR EXPERIMENT DESIGN
Russell R. Barton, Cornell University

MOMTE CARLO SURFACE APPROXIMATION USING ORTHOGONAL FUNCTIONS
Peter W. Glynn and Donald L. Iglehart, Stanford University

0945 - 1015 BREAK

1015 - 1145 GENERAL SESSION III

Chairperson: Douglas B. Tang, Walter Reed Army Institute of
Research; Chairman of the AMSC Subcommittee on
Probability and Statistics

OPEN MEETING OF THE STATISTICS AND PROBABILITY SUBCOMMITTEE OF
THE ARMY MATHEMATICS STEERING COMMITTEE

AN OVERVIEW OF STATISTICAL METHODS FOR CATEGORICAL DATA
ANALYSIS

Gary Koch, University of North Carolina at Chapel Hill

ADJOURN

PROGRAM COMMITTEE

Carl Bates Robert Burge Francis Dressel
Eugene Outoit Hue McCoy Carl Russell
Douglas Tang Malcolm Taylor Jerry Thomas

Henry Tingey
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STATISTICAL DATA ANALYSIS:
HOW FAR WILL. COMPUTER GRAPHICS TAKE US?

David W. Scott
Department of Statistics

Rice University
P.O. Box 1892

Houston, Texas 77251-1892

ABSTRACT. In this paper we survey the directions researchers are following in statistical
graphics. Hardware support for animation and of color is expanding rapidly while price is at least
decreasing. While a fairly optimistic scenArio can be drawn, the most correct statement we can
make about the future of graphics and statistical computing is that the uncertainity has never
been greater. Potential obstacles towards eflctive use of computer graphics are discussed, particu-
larly in the academic setting. Strategies to break these bottlenecks will be suggested. Otherwise
excess CPU cycles may remain so.

I. I.RODLLCIJON.. Each year at the annual meeting of the National Computer Graphics
Association, a gala dinner is held at which the winners of various computer graphics contests are
presented. As the winning computer-generated images and videos are presentel, with bumble bees
darting among Rowers and pool balls reflecting the images of a futuristic shiny room, one is
overwhelmed by the shear raw power and impact of the presentation. There Is not (yet) a category
for statistical presentation, but one senses this is not out of the question.

The impact of modem computer graphics on statistical education and practice has not yet
been great. Eddy et al. in a recent article in Statistical Sciences have attempted to describe future
computing needs and trends, and graphics is an important part of the overall picture, The average
statistician ietains a small collection of typical images that are recycled over and over: scatter
diagrams including residual plots, frequency curves such as histograms, curve fits such as regression
lines, elliptical contours of normal densities including principal components; the list is surprisingly
small. Far more emphasis is given to tables: summary statistics tables, chi-squared tables,
analysis of variance tables, tables of percentiles, and spreadsheets. This follows the natural incli-
nation of statisticians to present a parsimonious summary of an incidence of data analysis: choose
a powerful model well-studied in the literature, estimate parameters and determine significance,
and present results summarizing the model in tabular and sometimes graphical forms. Image pro-
cessing, animation, rotation are all very unparsimonious statistical tools.

Historically, technology has affcted the relative importance of these forms. Early data
analysts such as John Graunt and William Petty favored tabular presentation, after all, paper was
a dear commodity. William Playfair showed the array of graphical presentation of busincss data
was worth the paper. Computation was expensive, and the human effirt required for creating
efective graphs was relatively cost-efkacive. Karl Pearson began the trend towards testing and
tabular presentation, but devoted much energy to graphs In the form of frequency curves. Fisher
and others accelerated the tabular form with analysis of variance and maximum likelihood, which
emphasizes parametric analysis over the more graphical nonparametric analysis. The emphasis
was on mathematical statistics. The rapir increase ih number crunching ability spawned the crea-
tion of statistical packages, with largely numerical output. Graphics was not ignored in such pack-
ages (certainly not in the past few years), but the quality was relatively low and options limited.
Quality graphics output is still much more expensive than computing, but the absolute price of
both has decreased so dramatically that we are seeing an explosion of interest in graphical statis-
tics. Truly impressive packages for personal computers are available and SAS and SPSS have pro-
vided similar tapabilitics for mainframes. Separately, many non-statistical companies providc
software for presentational graphics, aimed at business markets, ISCOL is one example, but such
quality products cost even acadenmi workers many thousands of dollars.



2. CURRENT IMPACT OF COMPUTER GRAPHICS. How strong has the impact of com-
puter graphics been on the statistical community? To look at many journals and statistical text-
books, you would be hard pressed to detect any revolution. In its fourth edition, Hogg and Craig's
classical textbook on mathematical statistics contains only five figuresl The Journal of the Ameri-
can Statistical Association is showing the change, but in unexpected ways. Roughly half of the
papers contain only tables. Those with figures contain more figures than papers ten years ago, but
ironically the quality is poorer. Ten years ago artwork was professionally drawn (if only approxi-
mating truth). Many figures today are drawn by PC's, which are acceptable but clearly inferior in
presentation quality and impact of their professional cousins. But the cost is so much less that we
accept substandard quality. The very recent increase in laser graphical output partially justifies
the premature switch to PC graphics.

The long and short of it is that we are within five years of everyone having the ability to
produce very high quality two-dimensional graphics virtually without cost. In other words, we
have succeeded in automating the kinds of graphs William Playfair drew 200 years ago.

3. NEW .DIRETIQ.M.. IN COMPUTER GRAPHICS. The emphasis of this paper is on
how much farther will computer graphics take statistics? Why is there a trend towards newer
graphical presentations? Graphics is at odds with classical statistics because graphics is non-
parsimonious. A graph cannot be neatly summarized or reduced to a few key coefficients and p -
values. Graphs demand close scrutiny and invite speculation and interpretation, something hardly
ever soon in parametric analyss. But the fundamental distinguishing feature is that graphs are
subjective, imprecise, manipulative, yet powerful. One novel multivariate graph is the Chernoff
face. An entire conference in 1978 was devoted to evaluating the subjective aspects of this tech-
nique, in particular, coping with the almost infinite possible alternative constructions for individual
datasets. There is no coniensus whether it is a serious statistical tool. The discipline of statistics
attempts to be very precise about its imprecision, and many statisticians do not find graphs precise
enough to serve as the analysis, preferring tables and statistics.

Yet the whole new technology of computer graphics and enhanced graphics chips has opened
up the possibility of a now generation of presentation graphics. More statisticians are focusing
their research efbrt in this area, and are represented by the new ASA section called statistical
graphics. The concerns about limitations of the old style graphics are even more critical in the
new style of graphics. The key additional features are color, solids rendering, translucency, and
animation; the Pixar machine is the state-of-the-art for all of these features. If we consider the
exploratory graphical tools for high dimensional data, we see that an important part of data
analysis is luck. For the higher the dimension, the smaller the fraction of data that can be
"explored" in a given amount of time. Thus different workers examining the same multivariate
data will probably see disjoint parts of it - quite in contrast to a parametric world using principal
components. Even the order in which the data are examined can be a factor, given the inevitable
fatigue. Some research is already under way to help automate the searching process (reminds me
of the computer science project to automate the game Rogue, called rogomatic). But real objec-
tions have been made about this imprecise form of data analysis. The use of color excludes those
who are color blind. The use of stereo viewing techniques is maddeningly unsuccessful for a large
percentage of professionals. Each new subjective element increases the power of the data analysis
but decreases the reliability and widespread usefulness of these techniques. Publishing is virtually
impossible, until CD-ROM publishing is available. A nonexhaustive list of projects includes: pro-
jection pursuit (Tukey, Friedman, Stuetzle); animated scatter plots (Tukey, Huber, Donoho);
exploratory methods (Tukey and Tukey); density esimation (Scott, Thompson, Tarter); glyphs
and stereo (Carr and Nicholson); grand tours (Buja and Asimov); programming languages (Becker,
Chambers, Donoho, Huber); programming environments (McDonald),

4. MANAGING THE FUTURE. But enough about how hard it all will be and how unap-
preciated it all may be. Are we going to be able to sustain research in novel statistical graphics'!
As an engineering undergraduate in 1968, I used to wait in line to use a Wang time-sharing calcu-
lator terminal (it actually could do the transcendental functions to twelve significant digits!). Once
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we began doing our number crunching through programming languages, we could accept and track
the new computing resources with almost no overhead. So in the past fifteen years, I have written
Fortran (and PL/I) programs on as many types of hardware. The only overhead was learning a
new editor, a few system commands, and the faster and bigger machine was immediately increas-
ing productivity and opening new horizons. There is still a bit more of that to be had. With the
workstations now available, we have finally obtained the luxury of wasting a huge fraction of CPU
cycles. This is of course a correct state of affiurs given the relative cost of faculty time. Idle CPU
seconds are costly only in terms of maintenance; idle graphics workstations cannot yet be justified
as maintenance costs are very high.

But we must face two developments. The first is parallel computing, The second is graphics.
Statisticians can probably make the most efactive use of parallel computers than any single group
of researchers, because much of our computing involves very loosely coupled computation such as
Monte Carlo simulation. Numerical analysts, on the other hand, face tightly coupled computation
which provides real gains only in rather specific situations. Theoretical limits exist to performance
in tightly coupled systems, no matter how many parallel processors are available. But all that
aside, to eftctively use hypercube or other parallel architectures is not a straightforward exercise.
It is even worse than having to give up your favorite pk'ogramming language and return to assem-
bler, Serious allocation of time and other supporting resources must be made at this time. One
reaction is that it is not worth the effbrt and just to wait until some computer scientist writes an
Incredible parallel compiler that takes non-parallel code and optimizes into parallel environments.
(Not too likely in my opinion. Gene Golub at Stanford In a comment after a lecture by John Rice
lamented that there weren't enough numerical analysts to go around to try and make parallel algo-
rithms for each differential equation and hardware configuration.)

Graphics presents the same challenge, With more modest effort, one can produce useful pic-
tures on a PC or graphics terminal of the William Playfair variety. Playing with the color tables
can be fun. Choosing the specific 256 colors from the 16,777,216 choices can be a bit frustrating.
Graphics chips have helped enormously, putting frequently used graphical transformations into
hardware and supporting animation. The interface with these chips is at about the same level as
other graphics commands, almost at the assembler level, pixel by pixel. Some systems are avail-
able at the command level to avoid this, but the convenience eventually becomes the limitation,
both in functionality and performance. At a somewhat lower level, graphics standards have
appeared, such as CORE and OKS. But any commercial outfit wili admit that the advantages of
portability are outweighed by the benefits of performance allowed by assembler programming. But
mosi academics are satisfied by "prototype" systems rather than commercial performance.

My observation is that with graphics systems it is very difficult to build upon previous work.
Each new generation of hardware demands a complete new attack. As the graduate students who
did the previous system disappear, the next generation of students have a more difficult task get-
ting up to speed. For the better hardware often has many more capabilities, so reproducing the
previous system often much harder. Therefore, less time is available for extending the previous
system and actually less research gets done. This is a bit overdrawn, but accurately reflects what
has happened over the past fifteen years. At Berkeley, a biostatistical researcher developed a
analysis and graphical system on some IBM hardware that he nursed for eight years beyond its
supported lifetime, before finally biting the bullet and updating hardware. At Rice and Stanford
and other places, graduate students who worked on very specialized hardware and produced very
useful systems, graduated and went away. What was left was a collection of faculty who had
directed the research but who did not have the time to actually program the system, maintain it,
or even fully understand it. Thus the next generation of graduate student basically found it
impossible to effactively use the machines. Maintenance costs and down-time were significant as
the expensive hardware aged, and using the previous student's system frustrating (and not
research). The apparent time to start new and create a wholly new system was determined too
risky, since rumors that the machine might be sold (since no one was using it) began to circulate.
The traditionally successful faculty/graduate student relationship was found wanting. The need
for continuity implied the need for a new type of person in the picture (nontraditional), the staff
support group. These persons can usually be recruited from recent graduates by offering post-docs,
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research positions, and other positions not commonly found in statistics groups, Thus there is a
need to restructure research personnel to continue this work. The systems are too complex for
individual faculty to manage (much less to retrain unproductive faculty). Fewer and fewer gradu-
ate students are able to master the complexities of these systems in the few years available and
make real contributions. Those who can leave quickly, leaving behind a serious void in continuity,
rendering expensive equipment unusable almost overnight. These statistics and computer science
wizards are not well-recognized as doing valid statistical research worthy of tenure track (as
opposed to statistical computing). The result is inability to do the desired research, Which neces-
sarily includes extensive systems development. We seem to be moving towards the system used by
sciences, many post-docs per faculty member as well as support staff to provide full-time research
efbrt and continuity of systems expertise and support, something that cannot be even partially
satisfied by faculty and students alone. Unfortunately, the job market is so strong in statistics as
opposed to these other areas that it will be very difficult to build up new centers and move
towards the big research lab model,

This will be a rather traumatic trend. It is well-known that using programmers greatly
reduces output (due to decreased reliability of code and less Intimate knowledge of the problem)
and decreases hands-on experimentation that leads to new developments, but senior faculty time
can not usually be allocated significantly for this purpose. Debugging purely graphical systems is
extraordinarily difficult. Dr. Banchoff at Brown University reports that Roger Penrose found a bug
in a four-dimensional hidden-line removal algorithm by simply watching it perform. Testing will
be an enormous headache and problem. Everything looks so pretty when the output is graphics.
Difficult to be critical. We have watched computer science departments try and manage very large
development projects, Statistical researchers will have to pay attention to how these efforts have
been organized and managed. Statisticians seem to be a bit impatient and more satisfied with pro-
totypes of systems than is healthy for the profession.

Another approach has been to move to novel computing environments that hold the promise
of improved user productivity and portability. The LISP machines fall into thk category.

At Battelle Labs in Richland, Washington, Wes Nicholson and Dan Carr have pioneered
research Into the use of glyphs and stereo viewing for data analysis. In 1983 they Invited a dis-
tinguished panel of statisticians and computer scientists to review and criticize their progress. It is
clear from the reprinted papers and discussion that the visitors could not decide what was "funda-
mental research" and what was merely "systems development." This lack of a clear understanding
of the joint roles of these activities has hindered the professional development of many young
computer-bound statisticians,

5. CONCLUSIONS. We asked the question of how far will computer graphics take us? The
answer is a long way, but not with the current research structure, Graphics requires as much sup-
port as supercomputing or parallel architectures, but may not get it directly. Many of the sciences
and engineering departments have received adequate laboratory resources and statistics must be
added to the list. The need for and trend towards graphics can not be altered, but we can work on
improving presentation quality and tifoctiveness, such as Bill Cleveland (1985) and others have
been attempting to evaluate. Statisticians have contributed much to the burgeoning field of
"scientific visualization," but it is computer scientists who have dominated the funding in the field.
A closer working relationship to the fields of application is already occurring but more should be
expected. Finally, examples of figures shown in the original talk may be found in the references
below.

6. ACKNOWLEDGMENTS. This work was supported in part by grants from the ONR and
the ARO, N00014-90-J-1176 and DAAL-03-88-K-0131, respectively. The original talk was greatly
varied to cope with the unusual circumstances surrounding the great California earthquake the
preceding day. I wish to thank the organizers for their professionalism under such stress.
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EVALUATION OF
DESERT CAMOUFLAGE UNIFORMS

BY GROUND OBSERVERS

GEORGE ANITOLE AND RONALD L. JOHNSON
U.S. ARMY BELVOIR RESEARCH, DEVELOPMENT AND ENGINEERING CENTER

FORT BELVOIR, VIRGINIA 22060-5606

CHRISTOPHER J. NEUBERT
U.S. ARMY MATERIEL COMMAND

ALEXANDRIA, VIRGINIA 22333-0001

ABSTRACT

The standard U.S. Army desert camouflage uniform appears dark against U.S. and Saudi
Arabian desert backgrounds, Prototype uniforms were developed and evalup ted in the desert
Southwest in 1986. Test results led to further evaluation, in 1987, of seven n. W uniforms, plus
the standard uniform. Uniforms were shown in all possible pairs, at ten sit s, to U.S. Marine
Corps and Fort Belvoir personnel, who served as ground observers. The uniforms were judged
on their ability to blend with the background. The best of each pair was independently
selected. An analysis of variance and Duncan's Multiple-Range Test statistics were performed.
It was determined for most sites, and across all sites, that three new uniforms were
significantly (a < 0.05) best in blending with the background.

1.0 SECTION I - INTRODUCTION

The standard U.S. Army desert camouflage uniform is made in a pattern consisting of'
six colors. The predominant color areas are tan, khaki, light brown, and dark brown. Small
light-brown areas outlined in black are scattered throughout the other color areas. This
uniform was taken to Saudi Arabia in 1980, and viewed against multiple desert backgrounds.
In all cases the uniform appeared dark and did not blend well with any of the observed desert
backgrounds. This information was given to counter-surveillance personnel at Natick RD&E
Center, MA. A series of seven prototype desert uniforms was, then made and given to Fort
Belvoir for a desert evaluation in 1986. Analysis of this data" identified uniforms 4, 5, and
6 as being the most effective in terms of blending with the U.S. desert test sites investigated,

Using the additional test information collected by Belvoir as a basis, Natick then
developed uniforms 8, 9, 10, and II for further evaluation. These uniforms, along with
uniforms 4, 5, and 6 and the standard U.S. Army uniform, ioentified as uniform I, wcrc
evaluated in the U.S. desert Southwest in 1987. The quantitative analysis of their ability to
blend with various Southwest desert bachgrounds is the subject of this report.

2.0 SECTION 2 - PROCEDURE

2.1 Test Uniforms

A total of eight camouflage uniforms were tvaluated. The following is a description
of each uniform:

+ Uniform 0l--Standard U. S. Army Desert Day Camouflage Pattern
A six-color pattern now in use by the U.S. military consisting of the colors Light Tan
379*, Tan 380*, Light Brown 3fl*, Dark Brown 382*, Black 383*, and Khaki 384*.

* Uniform #4
A three-color pattern of* Light Tan 379*, Khiki 384*, and Light Brown 381*.
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4 Uniform #5
A three-color pattern of Light Tan 379*, Tan 380*, and Khaki 3840.

+ Uniform #6
A three-color pattern of Desert Tan 459*, Khaki 3840, and Light Brown 381*.

4 Uniform 08
A solid-color uniform of Tan 380*.

* Uniform 09
A solid-color uniform of Khaki 384*.

+ Uniform 010
A three-color pattern of Khaki 3840, brown** and sand**.

# Uniform #l1
A two-color pattern of clay** and Khaki 3840.

*Natick numerical color designations
**No numbers assigned

2.2 Test Sites

A total of ten sites were selected for the study. All the desert sites contained sparse
vegetation similar to that found in areas of interest in the Middle East, The soil ranged in
color from a light buff/tan to gray and dark brown, and represented a good cross-sectional
spectrum of different-colored desert backgrounds, The order of the ten sites as they will
appear throughout this study is seen in Table 1.

Table I
Site Order Identification

Site # Color Location

I Buff Yuma Sand Dunes, AZ
2 Light Gray Ogilby Road, Tlimco, CA
3 Very Light Tan Yuma Proving Grounds, AZ
4 Dark Beige Tan Anza Borrcgo State Park, CA
5 Light Tan Tank Trail, 29 Palms, CA
6 Dark Tan Salton Sea, CA
7 Beige Tan Anza Borrego State Park, CA
8 Light Beige Tan Anza Borrego State Park, CA
9 Tan Jean Dry Lake Bed, NV
10 Gray Tan Rt. 15, Baker, CA

2.3 Test Subjects

The test subjects consisted of U.S. Marine Corps enlisted men from Camp Pendleton,
CA, and civilians from the U.S. Army Natick Research, Development, and Engineering Center,
Natick, MA, and the U.S. Army Belvoir Research, Development, and Engineering Center, Fort
Belvoir, VA. A maximum of 15 observers to a minimum of 10 observers were used at each test
site. All subjects had at least a corrected visual acuity of 20/30 and normal color vision.

2.4 Data Generation

The eight uniforms were viewed, individually, in all possible pairs (28). The viewing
distance from the subject to each pair of uniforms was about 25 meters. The observers were
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told to select the one uniform from each pair that best matched or blended with the
surrounding background in terms of color. The observers were instructed to discount
shrubbery if present. This instruction was necessary, because of the very sparse shrubbery in
the deserts of the Middle East when compared with the U.S. desert Southwest. The mean
preference with associated stp ndard error, 95% confidence intervals, analysis of variance,
and Duncan's Multiple-Range were calculated for all sites, and averaged across all ten sites,
The higher the mean preference, the more preferred the colors were rated by the ground
observers as blending with the desert background.

3.0 SECTION 3 - RESULTS

The camouflage uniforms were evaluated at each of the ten sites to determine which
colors best blended with the desert environment. Section 2.4 describes how the data was
generated for all sites, and when averaged across all sites, Table 2 shows the uniforms that
best blended with each site and when averaged across all sites.

Table 2
Summary of the Best Desert Uniforms for Each Site

In Ability to Blend with the Background

Uniforms
1 4 5 6 8 9 10 11

Site I X X
Site 2 X X X X
Site 3 X X X X X
Site 4 X X X
Site 5 X X
Site 6 X X X X
Site 7 X X X
Site 8 X X
Site 9 X X X
Site l0 X X X
Across All

Sites X X X

The statistical results of each site for the above best camoufloge uniforms will not be
included, because they would be too voluminous to present in these proccedings. This data is
available upon request from the U.S. Army Belvoir Research, Development and Engineering
Center, ATTN: STRBE-JDA, Fort Belvoir, VA 221060. Table 3 contains the mean preference
with associated standard error and 95% coniderco intcrvul for the ability of' the desert
uniforms to blend with the background, when averaged aicross all sites. Figure 1 Is the graphic
display of Table 3. Table 4 is the analysis or variance performed to determine if there arc
significant differences between the various camouflage uniforms in their ability to blend with
the desert backgrounds. Table 5 identifies which uniforms differ from each other through the
Duncan's Multiple-Range Test.
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Table 3
Mean Preference Rating for Desert Background Blend
and 95-Percent Confidence Intervals (Across All Sites)

Standard 95% Confidence Interval
Uniform N Mean Error Lower Limit Upper Limit

1 116 0.8190 0.0761 0.6683 to 0.9696
4 116 4,3966 0.1266 4.1458 to 4.6473
5 116 4.7845 0.1340 4.5190 to 5.0500
6 116 2.5345 0.1725 2.1928 to 2.8761
8 116 4,5000 0.1197 4,2630 to 4.7370
9 116 0.9397 0.0902 0.7610 to 1.1184

10 116 3.9655 0,1278 3.7124 to 4.2187
11 116 3.6466 0.1878 3,2745 to 4.0186

HI GH 5,Ozaa
a 5.0 4,.472 4. "7370
z I 1].4,~._

w4 T 4,217
j ,4.0- 4 , 14•51 4 .2030- "

M. 40345 .71244

o 3,0 2.U7SI 3, 745

I- 2.0 ?. 1920

"1 1114C, goBll1,0 +
9 .61 017510

" 0 ,0 I I I , , I . .
LOW .q 5 a 9 10 11

CAMOUF L. AOI U N I FORM

Figure 1
Desert Camouflage Uniform Ability to Blend with the Desert Background,

Means, and 95-Percent Confidence Intervals (Across All Sites)

Table 4
Analysis of Variance for the Ability of the Camouflage

Uniforms to Blend with the Desert Background (Across All Sites)

Degrees of Sum of
Source Freedom Squares Mean Square F-Test Level

Uniforms 7 2046.1379 292.3054 140.4009 0,0000*
Error 920 1915.3793 2.0819
Total 927 3961,5172

Bartlett's Test for Homogeneous Variance
Number Degrees of Freedom - 7
F - 19.23 Significance Level - 0.000'*

*Significant at a lcess than 0,001 level
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Table 4 indicate.. ýhat there are significant differences in the ability of the camouflage
uniforms to blend with the desert background. The Bartlctt's Test indicates that the variance
for each uniform is not homogeneous, i.e., significantly different, so they are not necessarily
from the same population.

Table 5
Duncan's Multiple-Range Test

for All Sites Combined, Daylight

I UNIFORM 4 UNIFORM 8 UNIFORM 5
4.3966 4.5000 4.7845

2 UNIFORM II UNIFORM 10
3.6466 3.9655

3 UNIFORM 6
2.5345

WORST 4 UNIFORM I UNIFORM 9
0.8190 0.9397

4.0 SECTION 4 - DISCUSSION

A review of the data for sites 1-10, and for all sites combined, shows that camouflage
uniforms 4, 5, and 8 were the most effective in blending with the desert terrain. These
uniforms had mean blending values of 4.3966, 4.7845, and 4.5000 respectively (Tables 3 and
5). With the exception of site 5 (Table 2), where camouflage uniforms 6 and 10 were judged
as best blending with the desert background, uniforms 4, 5, and 8 had at least one member
among those that blended best with the desert background. The overall mean-blending values
for the uniforms do not diffcr significantly from each other (Table 5 and Figure 1).
Additional review of the data indicates that the standard camouflage uniform (--l) and
uniform 9 had the worst blend with the desert background, when averaged across all sites.

The data for this study appears fairly clean; however, one large and pressing caveat
must be taken into consideration, before any final decision on desert uniforms is made. The
uniform tests conducted so far have been in the U.S. desert Southwest. Any future conflicts
in which a desert camouflage uniform will be used by U.S. forces will, in all probability, be
in the Middle East. These deserts tend to be lighter and more tan than the grayer desert of the
United States. They also have much less vegetation. The best camouflage uniforms from this
study should be evaluated in the areas of interest in the Middle East for final determination
as to color blend with the background. The resulting data may necessitate color modifications
of the uniforms to ensure that the best possible blend with the deserts of interest is achieved.

5.0 SECTION 5 - SUMMARY AND CONCLUSIONS

A total of eight camouflage uniforms were evaluated as to their ability to blend with
desert backgrounds in the U.S. desert Southwest. Ten sites were used. The uniforms were
viewed in all possible pairs (28), and with the one selected from each pair that blended best
with the background. The results of this evaluation produced the following conclusions:

a. Camouflage uniforms 4. 5, and 8 blended best with the U.S. desert backgrounds.

b. Standard camouflage uniform I and prototype uniform 9 were the least effective
in blending with the U.S. desert backgrounds.

c. An additional desert camouflage evaluation should be conducted in the Middle East.
io ensure that the best uniform is selected for the U.S. military.
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HAS VARIABILITY BEEN REDUCED?

Gary Aasheim
U.S. Army Armament, Munitions and Chemical Command

Pro,duct Assurance and Test Directorate
Tool and Equipment/Aircraft Armament Branch

Rock Island, Illinois 61299-0000

Often changes are made in measuring methods and in production methods
with at best, only checks to determine whether or not the changes affected
variability, After 6 chunge is made, a natural question is - Did the
change affect measurement precision or product uniformity?

I am not aware of an established method for analyzing before and
after sample results to answer that question for all situations. Of
course, if the before and after change samples are from the same
population, the standard F-teIt can be used.

But sometimes the before-change samples are from one Set of
populations and the atter-change samples are from a different set of
populations,

One method for dealing with this situation is to compare the pooled
before change variance with the pooled after change variance using an
F-test, However, if one or both sets of populations are heteroscedastic,
this method seems to be of marginal soundness, What are some possible
approaches for dealing with this latter situation?
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WHICH DISTRIBUTION APPLIES?

Gary Aasheim
U.S. Army Armament, Munitions and Chemical Command

Product Assurance and Test Directorate
Tool and Equipment/Aircraf.t Armament Branch

Rock Island, Illinois 61299-6000

1. Faced with the questions - do the sample measurements support the
customer's belief that a given dimensional requirement was not met to the
degree required by the contract, and, if not, what dimensional
requirements could be met to the required degree? - a co-worker of mine
took the 60 sets of 20 readings (see below) and checked for normality by:

a. transforming the readings in each set by dividing each difference,
reading minus set sample average, by the set sample standard deviation.

b. treating the 1200 transformed readings as a single sample of 1200.

c. finding the average, standard deviation, skewness and kurtosis of the
transformed readings, plus the standard deviations of the latter two
statistics based upon the assumption that the 1200 readings were from a
normally distributed population.

d. breaking the transformed readings by size into 26 groups and running
a chi-square goodness-of-fit test where the expected values were based
upon the normal distribution.

2. Two considerations drove the transforming and pooling efforts above.
First, running 60 tests for normality would have taken more time and work
than the approach taken. Second, when my co-worker gained an initial
acquaintance with the data by computing sample averages and standard
deviations and by counting readings outside the dimensional requirements,
he did not spot any obviously atypical readings and, so, felt that an
assumption of a s'-.gle underlying statistical distribution with different
parameters for diffei.ent populations was reasonable.

3. Is there a better approach than that used by my co-worker?

Preceding Page Blank
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LOT DATA TO ACCOMPANY 'WHICH DISTRIBUTION APPLIESI" PAPER FOR
35TH DESIGN OF EXPERIMENTS CONFERENCE

L 0 T N U M B E R

87 88 89 70 71 72 73 74 75 78 77 78 79 80 81 82 83 84

82 84 77 83 58 83 82 81 81 82 90 88 72 65 82 85 84 63
84 83 88 84 53 73 88 60 85 81 84 84 88 64 54 55 80 69
81 84 84 83 80 83 .94 71 87 80 85 82 88 61 62 54 73 59
a4 82 78 84 88 85 101 76 83 55 99 65 58 83 84 55 65 89
69 81 80 81 83 C3 107 81 82 80 82 65 82 83 62 59 05 70
87 83 88 85 63 85 86 60 88 62 80 70 89 81 65 81 69 74
74 84 86 82 68 82 92 66 71 59 88 57 87 84 62 59 86 70
72 84 74 59 88 G9 89 88 85 80 77 80 74 85 59 83 83 70
74 81 75 63 82 82 89 58 84 59 83 80 85 62 81 83 59 70
72 82 78 88 51 83 70 58 83 82 83 59 82 80 80 83 88 73
84 88 85 65 74 88 94 83 73 85 74 59 88 83 88 82 68 70
84 64 82 63 68 80 82 83 89 58 77 80 84 85 '00 85 84 83
68 81 87 88 58 82 87 85 88 82 83 81 85 85 57 73 81 71
59 81 81 85 84 62 986 689 81 82 78 80 88 60 58 58 85 89
87 88 81 83 54 87 95 62 100 58 80 82 81 88 89 85 71 88
87 88 87 88 88 85 95 68 78 58 81 58 71 82 80 74 77 89
58 85 85 82 84 88 87 685 91 62 85 58 68 85 52 89 82 70
80 82 83 88 58 87 90 84 85 80 81 88 87 59 82 84 52 80
59 83 87 85 88 82 90 83 86 84 72 81 82 59 83 80 81 78
82 84 75 59 59 83 88 81 81 82 75 84 58 87 57 82 83 72

L 0 T N U M B E R

85 88 87 88 89 90 91 92 93 94 95 98 97 98 99 100 101 102

83 71 85 83 81 70 80 84 58 88 83 64 61 67 73 85 58 88
81 70 84 71 88 58 57 88 57 87 54 83 82 87 83 84 82 68
58 88 58 88 80 87 84 68 59 82 55 59 88 85 60 74 66 67

59 71 54 87 84 62 58 71 85 80 80 70 75 88 87 68 55 82
57 74 80 71 59 88 81 86 82 60 62 73 72 54 87 79 60 65
59 69 54 65 62 88 58 82 63 57 81 61 65 58 08 63 62 68
58 89 70 82 88 88 70 87 82 59 81 87 88 70 71 70 81 65
81 85 80 89 81 88 82 88 80 81 82 73 72 80 71 59 58 59
68 88 83 85 88 82 59 87 62 81 83 74 71 87 88 83 81 82
80 70 81 85 81 83 80 85 88 81 82 88 70 59 87 73 58 85
80 82 81 84 80 88 80 88 83 80 57 85 83 57 74 88 82 81
89 71 80 81 83 87 80 84 83 81 57 63 88 85 87 87 83 81
81 89 58 85 59 88 60 81 84 85 83 88 81 71 85 39 82 57
82 73 865 88 59 75 81 89 58 58 64 83 81 89 74 61 55 61
81 71 84 70 83 85 58 83 80 83 71 82 82 87 71 85 83 57
80 87 81 88 58 76 58 85 81 61 63 89 59 71 68 84 80 58
80 68 57 85 59 72 64 809 63 80 59 71 80 69 60 65 57 81
58 72 54 68 80 65 65 71 61 54 63 72 59 64 65 60 55 65
63 55 64 69 80 67 56 68 62 54 62 67 66 68 f3 ee 52 69
64 55 59 61 65 65 58 56 59 57 61 72 67 03 66 61 52 55
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LOT DATA TO ACCOMPANY "WHICH DISTRIBUTION APPLIES9" PAPER FOR

35TH DESIGN OF EXPERIMENTS CONFERENCE (Cont.)

L 0 T N U M B E R
103 104 105 106 107 108 109 110 Ill 112 113 114 115 116 123 124 125 126

57 67 72 63 75 60 57 56 64 68 59 6g 63 83 5a8 62 67 8064 57 69 72 58 67 60 59 63 62 65 78 64 70 45 e2 68 7457 63 70 78 63 61 61 62 75 62 61 71 69 70 67 62 69 8958 76 64 75 68 58 59 66 64 55 62 67 69 70 63 64 65 8762 64 63 70 67 55 65 72 78 59 61 63 74 64 49 62 58 go61 69 61 68 67 59 63 58 61 68 68 63 68 72 71 57 65 94!4 77 68 74 73 59 63 59 61 63 60 67 69 65 56 63 67 8355 74 74 67 76 57 6O 02 69 62 59 79 63 70 71 67 65 8559 63 83 76 64 63 55 72 66 65 64 75 64 59 68 64 64 8262 61 66 74 61 59 60 63 66 56 66 04 64 57 63 66 63 9155 64 64 72 e4 52 50 64 68 66 65 71 65 57 60 56 64 8653 65 51 69 63 62 55 57 63 60 59 72 60 62 70 63 69 8670 66 59 75 63 58 57 61 57 61 65 74 60 66 60 69 66 8054 69 66 72 63 59 63 55 66 62 66 70 63 58 67 68 6g 8254 73 61 74 67 60 55 65 61 61 62 72 66 53 72 64 70 8566 56 70 72 66 63 62 66 63 59 60 80 71 62 67 66 65 8968 63 61 70 74 60 54 60 69 58 58 91 73 38 689 09 67 8471 66 62 70 62 57 58 60 75 60 58 56 68 63 56 6g 66 9054 71 67 64 62 53 58 60 72 63 63 87 69 61 64 79 65 8661 79 63 67 63 56 58 60 63 59 60 63 75 65 61 70 55 84

L 0 T N U M B E R

127 128 129 130 131 132

60 86 61 64 56 89
59 92 59 73 65 91
56 81 60 81 61 9!
61 100 62 76 64 100
59 76 59 73 57 89
59 97 57 57 62 91
65 97 61 65 62 83
58 87 58 83 57 103
59 83 61 69 59 109
65 79 64 70 59 97
66 88 56 74 55 92
67 87 57 81 57 90
68 80 64 67 61 100
66 85 65 74 64 85
64 89 60 71 60 90
67 87 65 87 63 98
71 97 69 78 61 95
59 88 68 77 56 74
65 87 64 88 63 88
62 93 65 70 03 110
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STATISTICALLY BASED MATERIAL PROPERTIES

Donald M. Neal and Mark G. Vangel
U.S. Army Materials Technology Laboratory, SLCMT-MRS

Watertown, Massachusetts 02172-0001

ABSTRACT

This paper describes statistical procedures and their importance
in obtaining composite material property values in designing struc-
tures for aircraft and military combat systems. The property value is
such that the strength exceeds this value with a prescribed probabil-
ity with 95% confidence in the assertion. The survival probabilities
are the 99th percentile and 90th percentile for the A and B basis
values respectively. The basis values for strain to failure measure-
ments are defined in a similar manner. The B value is the primary
concern of this paper.

INTRODUCTION

Many traditional structural materials, which are homogeneous and
isotropic, differ from composite materials which have extensive
intrinsic statistical variability in many material properties. This
variability, particularly important to strength properties, is due not
only to inhomogeneity and anisotropy, but also to the basic brittle-
ness of many matrices and most fibers and to the potential for prop-
erty mismatch 'etween the components. Because of this inherent sta-
tistical variability, careful statistical analysis of composite mate-
rial properties is not only more important but is also more complex
than for traditional structures.

This paper addresses this issue by discussing the methodologies
and their sequence of applications for obtaining statistical material
property values (basis values). A more detailed analysis showing the
various operations required for computation of the basis value is
presented by the authors in the statistics chapter of the MIL-17 Hand-
book (ref. 1). The procedures in this handbook required substantial
research efforts in order to accommodate various requirements (eg.
small samples, batch to batch variability, and tolerance limits) for
obtaining the basis values. Guidance in selection of the methodology
came from the needs of the military, aircraft industry, and the Fed-
eral Aviation Administration (FAA). Some of the procedures include
determination of outliers, selection of statistical models, tests for
batch to batch variation, single and multi-batch models for basis
value computation and nonparametric methods. In figure 1, a flowchart
is shown outlining the sequence of operations.
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An important application of the basis property value is to the
design of composite aircraft structures where a design allowable is
developed from this value. The process usually involves a reduction
in the basis values in order to represent a specific application of
the composite material in a structure (for example, a structure with a
bolt hole for a particular test and environmental condition). One
common approach in the design process requires the design allowable be
divided by the maximum applied stress or strain and the result to be
greater Lhan one. The basis value is also used in qualifying new
composite material systems to be used in the manufacture of aircraft.
In this case, the values are obtained from an extensive test matrix
including both loading and environmental conditions. The value also
provides guidance in selecting material systems for specific design
requirements.

The paper also shows how material strength variability and the
number of test specimens can effect the determination of reliability
numbers. Methods are presented for obtaining protection against this
situation by providing a tolerance limit value on a stress correspond-
ing to a high reliability. A comparison between deterministic and
statistical reliability estimates demonstrates the inadequacy of the
deterministic approach. A case study is presented describing the
recommended procedures outlined in the MIL-17 Handbook for determining
statistically based material property valuea.

RELIABILITY ESTIMATES

Sample Size - Variability

The importance of determining a tolerance limit on a percentile
value is granhically displayed in figures 2 and 3. The cumulative
distribution function (CDF) of the standard normal (mean equals 0,
standard deviation 1) is plotted for sample sizes of 10 and 50, using
25 randomly selected sets of data. In figure 2, for n equals 10, the
spread in the percentile is 2.1 for the 10th percentile. In figure 3,
for n equals 50, the spread is .7 for the sarae percentile. The
results show the relative uncertainty associated with small sample
sizes when computing reliability values. The range in the percentile
can also depend on the amount of variability in the data (i.e., the
variance)

Often in structural design, a design allowable value is obtained
from the basis value. A design allowable is an experimentally deter-
mined acceptable stress value for a material (called an allowable
stress). The allowable is a function of the material basis value,
layup, damage tolerance, open holes, and other factors. It is usually
numerically determined for some critical stress region located within
the structure. In using the allowable it is required that the criti-
cal stress be less than a proportion (margin of safety) of the allowa.
ble stress value. Determining a property value from only 10 strength
tests using 90% vel:ability estimates without confidence in the asser-
tion coulcd result in a nonconservative design situation. In order to
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prevent this occurrence and provide a guarantee of the reliability
value, a tolerance limit (i.e. a lower confidence bound) on the per-
centile is recommended. The MIL-17 Handbook statistics chapter
describes methods for obtaining basis values for a prescribed toler-
ance limit.

Definition of the B-Basis Value

The B-basis value is a random variable where an observed basis
value from a sample (data set) will be less than the 10th percentile
of the population with a probability of .95. In figures 4 and 5 a
graphical display is shown of the basis value probability density
functions for random samples of n equals 10 and 50 respectively.
Samples are from the same population as in figures 2 and 3. The
vertical dotted lines represent the location of the population 10th
percentile (X ). The probability density function of the population
is also dimplA 2 d in the figures. Note that 951 of the time the basis
value is less than X 10; The graphical display of the basis value
density function sho 4 0 much less dispersion for n equals 50 than for n
equals 101 therefore, small sample sizes often result in very conser-
vative estimates of the basis value.

STATISTICAL METHODS - MATERIAL PROPERTY VALUES

Flowchart Guidelines

Since the statistical procedures and the flowchart (figure 1)
have been published in the MIL-17 Handbook (ref. 1) and (ref. 2), this
paper will only present a brief description of the methods, their
purpose, interpretation of results, and the need for following the
order of application suggested by the flowchart. The authors have
written a computer code which performs the necessary computations for
obtaining the basis values as described in the flowchart. The code is
available on a diskette, which can be used on various computers
including PC's that are IBM compatible. Both the executable and
source code are on the diskette. This code is available free of
charge from the authors. The flowchart capability was tested by
applying the recommended procedures using both real and simulated data
sets. The results of the simulations showed at least 95% of computed
values were less than the known 10% point, this is consistent with the
definitions of 'BI-basis value, see also (refs. 1 and 2).

The flowchart has two directions of operations, one is for the
single batch (sample), and the other is for the multi-batch case. A
batch could represent specimens made from a manufactured sheet of
composite material representing a roll of prepreg material. Published
MIL-17 Handbook basis values are usually obtained from five batches of
six specimens each.

Initially, let us assume the user of the flowchart has only a
single batch or more than one batch but that the batches can be pooled
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so that a single simple analysis can be applied. The first operation

(see figure 1) is to determine if outliers exist in the data set. A
more detailed discussion of outlier detection schemes and applications
are published in ref. 3. The method selected is called the Maximum
Normed Residual (MNR) procedure (ref. 4) and is published in the
MIL-17 Handbook. It is simple to apply and performs reasonably well
even though it assumes that the data is from a symmetric distribution.
The analysis requires obtaining an ordered array of normed residuals
written as

NRi m (Xi - x)/s, i=l,*''n (1)

where i is the mean, s is the standard deviation (SD), and n is the
sample size. If the maximum absolute value of NR (MNR) is less than
some critical value (CV) (see refs. 1 and 2), theA no outliers exist.
If MNR is greater than CV, then an outlier X is determined from the
largest NRi value.

Outlying test results are substantially different from the pri-
mary data. For example, assume that the data set contains 16 strength
values and 15 range from 150 to 200 KS! while the other is 80 KSI.
The MNR method would identify the 80 KS1 value to be an outlier. The
80 KSI specimen should be examined for problems in fabrication and
testing. If a rationale is determined for rejecting this test result,
then do not include the outlying test value in the data set when
obtaining the basis value. if there is no rationale for rejection,
the outlier should remain unless the test engineer believes that a
non-detectable error exists.

It is important to identify the existence of outliers but also of
equal importance to resist removing the values unless a rationale has
been established. Leaving in or arbitrary removal of outlying values
can adversely effect the statistical model selection process and
consequently the basis value computation. An outlier in a data set
will usually result in a larger variance and a possible shift in the
mean when compared with the same data without the outlier. The amount
of shift and the variance increase depends on the severity of the
outlier (distance removed from the primary data set). It is suggested
that for small samples (n is less than 20) critical values correspond-
ing to a 10% significance level be used (see refs. 1 and 2) in order
to identify outlying values. If the sample is greater than 20, then
use the 51 level. It is often difficult to test for outliers when
there is a limited amount of datai therefore, the 101 level will
provide additional power to detect outliers. This level will also
result in more chance of incorrectly identifying outliers. Outliers
can be incorrectly identified from data sets with highly skewed dis-
tributions, therefore, it is suggested the box-plot method (refs. 1
and 3) be applied for determining outliers in this situation.
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Goodness of Fit Test - Distribution Function

Referring to figure 1, the next step is to identify an acceptable
model for representing the data. In the order of preference the three
candidate models are Weibull, normal, and the nonparametric method.
The Weibull model is

FW(x) - 1 - exp[-(x/C)J] , where (2)

x is greater than O, q9 is the scale parameter, and 0 is the shape
parameLer, is considered first in the ordering of the test procedures.
The Anderson-Darling (AD) goodness-of-fit test statistic (refs. 1 and
5), is suggested for identifying the model because it emphasizes
discrepancies in the tail regions between the cumulative distribution
function of the data and the cumulative distribution function of the
model. This is more desirable than evaluating the distributional
assumptions near the mean since reliability estimates are usually
measured in the tail regions. The Anderson-Darling test statistic and
the observed significance levels computations are described in refs. 1
and 2. Example problems are also shown in ref. l, demonstrating
computational procedures for applying the AD method.

In following the flowchart, if the Weibull model hasn't been
accepted as a desired model, then a test for the normal distribution
is suggested,

Fx NW= -(2n)i2/ exp[(t'4)/2a2 ]dt (3)

where A is the mean, and a2 is the variance. The AD test for the
normal model is similar to the test for the Weibull. The procedure
used to identify the normal model is also in refs. 1 and 2. It should
be noted that for small samples reliable identification of a model to
represent the data is difficult unless some prior information of the
population is known.

If the Weibull and normal models are rejected, then a nonparamet-
ric method can be used to compute the basis value (see flowchart).
This method does not assume any parametric distribution as described
above. Therefore, model identification is not required, although
application of the method can often result in overly conservative
estimates for the basis value.

The conventional nonparametric method (ref. 6) requires a minimum
of 29 values in order to obtain a 'B'-basis value, and 300 are needed
for the 'A'-basis number. This paper presents a method for obtaining
'A' and 'B' basis values for any sample size. The method is a modifi-
cation of the ref. 7 procedure involving the ordered data values
arranged from least to largest with the basis value defined as

B X(r) - K(X(r) - X( 1 )), (4)
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where X. a is rdth rdered value and X is the first ordered number.
In reasr and 2 tables for r and K vdies are tabulated for sample
sizes n. Note, in the case where 'A' values are required for small
sample sizes, it is suggested that nonparametric methods be applied
unless some prior information of the model is known. This is because
of the limited information available in the lower tail region of the
distribution, which can result in erroneous estimates of the reliabil-
ity numbers. The 'A'-basis value is often used in design where a
single load path existst therefore, it is essential that the value be
conservative.

Weibull Method - 'B'-Basis Value

Returning to the sequence of operations as outlined in the flow-
chart, if the Weibull model is accepted, then determine the basis
value from the following relationship

A (5)
B a Q(ln(l/P B)]l

16 Awhere 0 and a are maximum likelihood estimates of the shape 8 and
scale a of the Weibull distribution. That is, these estimates maxi-
mize the likelihood function, which is the product of probability
densities (2) evaluated at each of the n data values. Tables for P
as a function of the sample size n and the code for determining ý aRd6'
are given in ref.. 2 and 3.

Normal Method - 'B'-Basis

If the Weibull model was rejected and the normal model is an
acceptable representation of the data, then compute the basis value as

B - X - KBS (6)

where K and S are the mean and SD, and K B is obtained from tables In
refs. 1 and 2.

PROCEDURES FOR MULTIPLE BATCHES

Anderson-Darling Test

If there are more than one batch of data being analyzed, then a
significance test is required in order to determine if the batches may
be pooled or if a multi-batch statistical analysis is to be applied
(se* flowchart). Note, the outlier test is to be applied to pooled
data prior to testing. The recommended test is the K-Sample Anderson-
Darling Test (refs. 1 and 8) which determines if batch to batch varia-
bility exists among the K batches. This test is similar to the AD
test for identifying acceptable statistical models for representing
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data. In the K sample case, raired comparisons are made for the
empirical CDP's while the othcr AD methods compare a parametric CDF
with an empirical CDP. In all cases, this cojaparison involves the
integration of the squared differenc of the CDF's weighted in the
tail region of the distribution, TWe K-sample AD is basically a two
sample test in that each sample (i batch) is individually compged
with the pooled K-1 other batches, repeated K times unti "each i
batch has been compared. The average of these K two-sample tests
determines the K-sample AD test statistic. Tables of critical values
and a detailed description of the method and its application is shown
in refs. 1, 2, and 8.

If a significant difference in noted among the K batches, then,
as shown in the flowchart, a test for equality of variance is sug-
gested using a method in ref. 9. Application of the method, tables,
and the necessary relationships for computing the test statistic are
given in refs, I and 2. The variance test is suggested only as a
diagnostic tool. Sample test results that have large variances rela-
tive to the other batches may identify possible problems in testing or
manufacturing of the specimens. Equality of variance is not required
when applying the Modified Lemon method, as discussed below, in the
multi-batch case. Although the Modified Lemon method is based on the
assumptions of equality of variance and normality, simulation results
have shown that these assumptions are not necessary. After testing
for equality variance, it is suggested that the basis value be
obtained from application of the Modified Lemon method (see figure 1).

The Modified Lemon Method

Composite materials typically exhibit considerable variability in
strength from batch to batch. Because of this variability, one should
not indiscriminately pool data across batches and apply single batch
procedures. The K-sample Anderson-Darling test was introduced into
the MIL-17 Handbook in order to prevent the pooling of data in situa-
tions where significant variability exists between batches. For the
situation where the K-sample Anderson-Darling test indicates that
batches should remain distinct, a special basis value procedure has
been provided. This method, referred to as the 'ANOVA' or 'Modified
Lemon' method, will be discussed next. A detailed description for
applying the method is shown in refs. 1 and 2. For a discussion of
the underlying theory, see ref. 10, the original Lemon paper, and ref.
11, the Mee and Owen paper which modifies the Lemon method.

The Modified Lemon method considers each strength measurement to
be a sum of three parts. The first part is an unknown constant mean.
If one were to produce batches endlessly, breaking specimens from each
batch, the average of all of these measurements would approach this
unknown constant in the limit of infinitely many batches. Imagine,
however, that one were to test many specimens from a single batch.
The average strength approaches a constant in this situation as well,
but this constant will not be the same as for the case where each
specimen came from a different batch. The average converges to an
overall population mean (a 'grand mean') in the first case, while the
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average converges to the population mean for a particular batch in the
second case. The difference between the overall population mean and
the population mean for a particular batch is the second component of
a strength measurement. Thi's difference is a random quantity - it
will vary from batch to batch in an unsystematic way. We assume that
this random variable has a normal distribution with a mean of zero and
some unknown variance which we refer to as the between batch component
of variance. Finally, in order to arrive at the value of a particular
strength measurement, we must add to the sum of the constant overall
mean and a random shift due to the present batch a third component.
This is another random component which differs for each specimen in
each batch. It represents variability about the batch mean. It also
is assumed to have a normal distribution with a mean of zero and an
unknown variance, which is referred to as the 'within batch' component
of variance.

The 'Modified Lemon' method uses the data from several batches to
determine a material basis property value which provides 95% confi-
dence on the appropriate percentile of a randomly chosen observation
from a randomly chosen future batch. This basis property provides
protection against the possibility of batch-to-batch variability
resulting in future batches which have lower mean strength than those
batches for which data are available.

To see what this means, imagine that several batches have been
tested and that this statistical procedure has been applied to provide
a 'B'-basis value. Now, imagine that you were to get another batch
and test a specimen from it. After this you obtained still another
batch and tested a specimen from it. If you were to repeat this
process for infinitely many future batches, you would obtain a distri-
bution of strength measurements corresponding to a randomly chosen
measurement from a random batch. You can be 95% certain that the
basis value which you calculated originally is less than the tenth
percentile of this hypothetical population of future measurements,
This is the primary reason why the Modified Lemon method is advocated
by the MIL-17 Handbook - it provides protection against variability
between batches which will be made in the future through the use of
data which is presently available.

An illustrative example of this method applied to nine batches of
material is shown below. The data sets did not pass the K-sample AD
test for pooling. Let the batches be

1 2 3 4 5 6 7 8 9

61.3 66.5 66.0 61.9 68.9 75.8 72.8 71.9 68.7
68.5 64.7 72.7 68.0 65.0 75.2 75.0 71.0 76.3
62.5 64.9 67.1 63.3 70.9 71.5 66.3 69.5 76.6
66.0 65.2 67.7 74.6 65.4 69.6 69.5 69.5 66.2
66.6 70.3 65.7 66.2 66.5 66.1 71.9 72.6 72.4
64.8 68.2 64.9 74.6 72.8
69.5 69.1 109.6
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with a single outlier, 109.6 determined from MNR method. Let's assume
109.6 was an incorrect test result and replaced by 69.6, a corrected
test value.

After a substantial amount of computation (see refs. 1 and 2)
involving sums of squares, within batch and between batch variances,
non-central t distribution, etc., the 'B'-basis value is

'B' 60.93

The summary statistics are

Batch ni Ri Si

1 7 65.60 2.99
2 5 66.32 2.33
3 5 67.84 2.84
4 7 67.33 4.17
5 6 66.93 2.45
6 5 71.64 4.03
7 5 71.10 3.33
8 6 71.52 1.96
9 7 71.80 3.88

It should be noted the value of 60.93 is lower than 61.9 of nonpara-
metric solution from the pooled sample. The Modified Lemon method can
be overly conservative (low basis values) in order to guarantee 90%
reliability with 95% confidence. The number of batches and the varia-
bility between and within the batches effect the computation of the
basis value. If there are few batches and large between batch varia-
bility with small within batch variability, then this situation could
result in very low basis numbers depending on the amount of variabil-
ity and number of batches.

In figure 6 results from application of flowchart procedures are
shown for three batches of five specimens of AS4/Epoxy material tested
in compression. In this case, the mean strength values show a small
amount of variability while there is a relatively large spread within
each data set. 'B'-basis results from the flowchart application are
for the following: ANOVA (Modified Lemon), Weibull, Normal, Lognor-
mal, and nonparametric methods. Not included in the flowchart results
are a list of assumptions that were violated. The results show a
small difference in basis values except for the nonparametric solution
which has the low value of 167.1. The Weibull method was suggested
since it passed the K-sample AD test and the AD goodness-of-fit test.
The relatively large within batch variances and small differences in
mean values made it possible to pool the batches.

Figure 7 shows another result of computing the 'B'-basis values
using the ANOVA, Weibull, and normal methods applied to another three
selected batches from same population as in figure 6. The ANOVA
result of 15.7 KSI is substantially lower than those from the other
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two methods, Unfoitunately, this is a result of a large difference in
mean values preventing pooling of the batches resulting in the
required ANOVA application. The large difference in mean values in
addition to relatively small within batch variability resulted in this
extremely low basis value. A 'B' value of 6.5 was obtained from the
simple normal analysis using the three mean values. The result shows
that for this example the ANOVA method primarily depends on the batch
means. The above results would suggest obtaining more batches or
investigating testing and processing procedures.

In figure 8, results are shown for the case of randomly selecting
another batch from the same population described in figure 7. In this
case the ANOVA result shows a value of 105.4 KS! which is substan-
tially larger than the 15.7 KS1 recorded for the three batches. The
importance in having a larger number of batches is shown from these
results in figures 7 and 8. Also, with more data available, the
pooled results for Weibull and Normal model also resulted in less
conservative values.

Figure 9 presents results showing where a substantial amount of
within batch data is not necessary. In case I, the ANOVA results for
three batches of 100 data values each, resulted in 154.9 KSI while for
case 2, three batches of ten each, a 'B'-basis value of 152 KSI was
obtained. This result emphasizes the importance of being able to
obtain more batches rather than increasing the batch size. However,
the ANOVA results in figure 6 show three batches can provide reasona-
ble results similar to pooled results if small differences in mean
values relative to batch variances exist. Note that for very large
batch sizes, the K-sample AD test can reject pooling of data even
though there is a small difference in mean values., This rejection is
statistically correct, but the user of the flowchart may consider the
difference in the batch means not of engineering importance. In this
case the user can make the decision of pooling or not pooling, since
there will be a small difference in basis values from pooled or
unpooled results. If there are large batch differences and the ANOVA
method is suggested from the flowchart, then adding more batches can
reduce the conservatism. The ANOVA method is a random effects model
which determines a basis value representing all future values obtained
from the same material system and type of test. In order to provide
this guarantee in the presence of large batch to batch variability,
there is the potential for it to be overly conservative which was
shown in figure 7.

Reliability at Basis Stress Value

Figure 10 conceptually describes the statistical reliability of a
simple structure in tension as it relates to the 'B'-basis applied
stress value. In the example shown in the figure, ten percent of all
the specimens (structures) will fail when subjbcted to load S. This
statement should be incorrect at most one time in twenty (95% confi-
dence). S is the 'B'-basis value obtained from strength (failure
load) measurements from specimens of similar material and geometry.
This statistical guarantee that at most 10% of the specimens will fail
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can provide the engineer with a quantitative number for selecting and
applying material in composite material structures. This is unlike
the conventional deterministic property value approach which is an ad
hoc procedure that reduces the mean strength measurements in order to
obtain some design value which can result in a potentially over or
under design situation. In applying the statistical basis value, it
is assumed the material, geometry, and loading conditions in the
structural design situation is similar to those obtained from the
strength measurements. This is also true for deterministic property
value applications. In the following sections the inadequacies of the
deterministic approach are discussed in more detail.

Reliability Values Statistical vs. Deterministic

In figure 11 the results of a simulation process involving the
random selection of ten values from population of 191 strength meas-
urements repeated 2,500 times are graphically displayed. For each
simulation a design number or material property value is obtained from
each of the three procedures X/2, L2/3)3X, and the MIL-17 flowchart.
The mean value of the data set is X. The reliability values, as shown
in the figure, are obtained by evaluating the population probability
distribution fit to the 191 values at the design numbers.

In the case where the mean is reduced by a factor of 1/2, the
strength values are very low (90 KSI), and the reliability is
extremely high (1.0). The engineer may not be able to afford such a
high reliability value of 1.0 (to twenty significant digits) at the
expense of having design values as low as 90 KSI when mean strength is
180 KSI. The factor of 2/3 increases the design value but reduces the
reliability to approximately .999. The flowchart 'B'-basis calcula-
tion provides higher strength values with acceptable reliability
numbers. The other two procedures show an element of uncertainty by
depending on the chosen factor. If the engineer used the factor of
1/2, this would result in an extremely over design situation require
either rejection of the material or the design. Alternatively, if the
engineer used the mean strength as design number, the reliability
would be reduced to .5, although strength values would be much higher.
The flowchart procedure removes the uncertainty by providing a guaran-
teed minimum reliability of .90 without unnecessarily reducing the
basis value. The minimum reliability can be increased to .99 if
necessary by using 'A'-basis computations as outlined in the MIL-17
Handbook.

Effect of Variance on Reliability Estimates

In figure 12 the effects of variance differences as they relate
to reliability estimates are shown from a simulation process. This
involved randomly selecting ten values from each of two separate
normal distributions with same mean of 100 and different SD's of 5 and
25 repeated 2,500 times. The reliability values are obtained in a
similar% manner as described in the previous section, except the proba-
bility values were obtained from the normal distribution. In the case
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where the SD is 5, there is very little dispersion in the reliability
values. Again, the design number from 1/2 is substantially lower than
the basis value using the flowchart process, although the reliability
is very high for this number. In comparing this with the results
using SD of 25, a substantial increase dispersion of the reliability
values particularly for the basis results using flowchart methods.
The flowchart results show similar reliability estimates for both SD's
of 5 and 25, although for the R/2 the reliability has been reduced
substantially from twelve nines to .96. This is the result of the
deterministic (O/2) approach being independent of variance. This is
not an issue if 50% reliability is required, but for 90% reliability,
variability is important. Dividing the mean by two can be nonconser-
vative for situation when the distribution has a large spread (long
tail). In order to make adjustment for this situation, the flowchart
method (basis value) is suggested. See results in the figure where
the basis value adjusts to a lower level but maintains the same range
for the reliability estimates. The basis value will guarantee a
reliability by adjusting the design value while the safety factor
apprnach cannot guarantee reliability. This result suggests using the
basis method if it is important to maintain a certain level of relia-
bility. The overall issue is that the flowchart methods will provide
property values with specified reliability with 95% confidence while
the deterministic approach is an ad hoc approach with no control of
the resulting reliability estimates.

CONCLUSIONS

This paper is an exposition of the statistical procedures
described in the MIL-17 Handbook for obtaining material property
values. Its primary goal was to introduce the MIL-17 statistics
chapter to the users so that they may use it more effectively. The
methods and the sequence of operations suggested by the statistics
chapter flowchart were analyzed with respect to their effectiveness,
purpose, and limitations. By following the flowchart procedures,
guidance is provided to the user so that reasonably accurate property
values may be obtained without relying on ad hoc schemes which could
potentially result in either excessively low or high values.

Each method and its order of application were discussed with
respect to their specific purpose, such as model identification, batch
to batch variability recognition, outlier detection, and the basis
value computation. There are situations where low basis values will
result, not because of limitations in the statistical procedures but
are usually the result of very large or small date sets, large batch
to batch variations, or model recognition.

The comparison between the statistical reliability and the deter-
ministic approach showed a preference for statistics since it was able
to guarantee a specified reliability in contrast to a deterministic
method which is primarily an ad hoc process resulting in considerable
uncertainty as to the corresponding reliability estimates. Finally,
the authors have attempted to provide a satisfactory definition of a
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statistically based material property value by introducing the toler-
ance limit concept and its importance. A number of illustrations were
presented showing the advantage of the tolerance limit over the deter-
ministic approach.
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FIGURES 2 AND 3 SAMPLE SIZE EFFECT ON RELIABILITY
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FIGURES 4 AND 8 BASIS VALUE PROB. DENSITY FUNC.
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FIGURE 12 RELIABILITY / STRENGTH COMPARISON:

A CASE STUDY - STAT. VS DETERMINISTIC
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STATISTICAL CULTURE: PROMOTING THE PRACTICE OF STATISTICS

Emanuel Parzen

Department of Statistics, Texas A&M University

Abstract

This paper proposes a framework, called Statistical Culture, for studying the practice

of statistics with the aim of improving the health of statistical science as measured by how

well citizens and scientists use it as a tool in their daily life and research. We identify

a paradigm for lifelong learning based on identifying five (parallel, non-hierarchial) levels

of statistical literacy: consumer, applier, consultant, collaborator, theorist. We support

accreditation of statistical literacy. NV\ make recommendations for how statisticians can

promote public recognition of the impoI tance of statistics, statistical literacy, and interac-

tion between researchers and statisticians. We propose "solutions" to the use of statistics as

a scientific method by research which aims to unify and guide thinking about the diversity

of statistical methods and theories.

Contents: Statistical Culture as a Paradigm for Lifelong Learning, Solutions, Prob-

lems, Levels, Excellence, Statistical Culture Levels Theorem, Olkin-Sacks Report, Statis-

tical Culture Applications Theorem, Statistical Culture Research Problems.

KEYWORDS: Foundations, Teaching, Statistical Literacy, Statistical Science, Unification

of Statistical Methods, Statistical Culture.
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STATISTICAL CULTURE AS A PARADIGM FOR LIFE LONG LEARNING: The

health of a society is becoming increasingly dependent on its statistical literacy, and how

statistics is practiced. Modern society is data-rich and has an ever-increasing need to

understand how data becomes information (useable knowledge). The goal of continuous

improvements of quality of processes Involved in the delivery of products or services requires

that decisions be based on the Information in data, not just on opinions or guesses; this is

the main recommendation of the philosophy of Ed Deming (see Mann (1988), p. 15).

This paper proposes that the practice of statistics at any of its leveil should be a lifelong

endeavor characterized by the features that are being advocated as tho requirements of

paradigms for lifelong learning that will be required in the 21st century (according to John

Sculley (1989), p. 1057):

0 "It should require rigorous mastery of subject matter under expert guidance.

* It should hone the conceptual skills that wrest meaning from data,

* It should promote a healthy skepticism that tests reality against multiple points

of view.

e It should nourish individual creativity and encourage exploration.

* It should support collaboration.

a It should reward clear communciation.

• It should provoke a journey of discovery.

* And above all It should be energized by the opportunity to contribute to the total

of what we know and what we can do."

The study of how to achieve the lifelong learning process required for the practice of
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statistics is called "statistical culture."

This paper seeks to show the important role of "statistical culture" in the practice of

statistics. It supports the concept of accreditation of statistical literacy at various levels.

The challenge for statistical education will be to find ways of bringing to the process

of instruction the passion for discovery that drive. excellent statistical thinking.

SOLUTIONS: Statistical culture (the study of the practice of statistics) has goals

of elegance and utility. The elegance of statistical culture is obvious; It enhances the

fun of doing statistics.The utility of the study of the culture of statistics is to motivate

statistical "steerumanship", developing consensus about (and implementing) the actions

needed for continuously evaluating and improving the health of the discipline and profession

of statistics.

Statistical culture can be said to be the study of the maps (geography, current history)

of statistics, rather than its ancient history (as in the history of statistics up to 1900). It

is the study of the maps of statistics from the point of view of understanding its current

state of the art and influencing its future development.

Statistical culture can be defined to be the study of:

how statistics is, and ought to be, practiced;

where statistics has applications (see Table 1) and who Is doing the applying;

what to teach in statistics courses;

why statistics works;

when are competing probability models and statistical methods successful;

accreditation of statistical literacy (rather than competency) at various levels.

To promote the practice of statistics, statistical culture seeks:

1. To develop maps of statistical methods which will help applied statisticians to strive

for continuous improvement of methods, to learn new methods to consider as alter-

natives, to compare competing methods, to more confidently obtain conclusions from
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comparisons of the results of competing methods of statistical data analysis of data

of a certain type, to obtain problem-driven results from methods-driven results, to

obtain substantive conclusions from data for which prior substantive knowledge was

not available,

2. To develop maps of statistical theories which help theoretical statisticians to define

frontiers of research and thus understand the sense and purpose of research which

otherwise may seem unfocused and unmotivated.

3, To develop maps of the relations between statistics and other fields of knowledge and

research which will help interactions between statisticians and researchers in other

disciplines provide more recognition to the research contributions of statisticians.

4. To develop maps of the contributions that statistical literacy and the practice of statis-

tics can make to a nation's quality of life and world competitiveness.

5, To organize (each year, in each community) Statistical Science Awareness Days to

promote the practice of statistics and public recognition of outstanding statisticians.

Statistical culture (which develops unifications, maps, frameworks) is urgently needed

in order to improve the image of statistics among scientists and professionals. It would

provide the ability to objectively recognize by suitable awards more statisticians as "out-

standing" contributors to the missions of their organizations as well as to the discipline

and the profession of statistics.

Unification of methods is one of the important facets of the use of the scientific method

in any field of research (and therefore, a fortiori, in statistics). Unification of statistical

methods does not prevent statisticians from using ad hoc solutions (which many claim is

their preferred approach) but rather encourages and guides such methods by clarifying

the methods available which may be chosen ad hoc; therefore the ultimate goal of research

(such as Parzen (1989)) on Grand Unified Theories of Statistical Methods, denoted GUTS,

is "grand unified ad hockery".
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PROBLEMS: Statist|.ians are increasingly aware that there are urgent problems in

the discipline and profession of statistics; we argue that problems can be solved if they are

discussed using scientific methods and a framework for the "culture" of statistical prac-

tice. Examples of such problems are: declining enrollment of statistics doctoral students,

difficulty of attracting young people into a career in statistics, teaching statistics to engi-

neers (Penzias (1989)), misunderstanding of the role of statisticians in quality control and

quality manufacturing (Hahn (1989)), expressions of dissatisfaction in the profession of

statistics about the appreciation and utilization of statisticians (Boroto and Zahn (1989)

and McPherson (1989)), failure of leading statisticians to continuously promote statistical

culture (to be providing leadership to the study of promoting the practice of statistics),

failure of many statisticians to be literate at appropriate levels In a diversity of statistical

methods (Including time series analysis).

LEVELS: We believe that one can apply the scientific method to the study of statistical

culture (the investigation of how statistics Is, and ought to be, practiced); answers to

such questions should not be based on prejudices but on a consensus of the philosophical

writings of successful statisticians. From recent literature about statistics (Bodmer (1985),

McPherson (1989)) one can conclude the following first step in drawing a map of the

practice of statistics (which we state below in more detail as the Statistical Culture Levels

Theorem).

The practice of statistics occurs at three levels of understanding and practice:

popular,

science-related professionals, and

professional statisticians;

further the practice of statistics by statisticians can be divided into three levels:

consulting

collaboration

theory and methods.
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EXCELLENCE: Statistical culture aims to provide a framework which stimulates

statisticians to understand and applaud each other's work (indeed, there seems to be too

much joy in "statistician bashing"); this may lbe a general failing of human nature but it

seems to be an urgent problem for statistics. The use of the word "level" should not be

interpreted as implying --;. vertical or series structure, with activity in statistical theory at

the top. The levels form a horizontal or parallel structure; it cannot be emphasized enough

that the understanding required in each level involves different aspects of the practice and

methods of statistics. A possible analogy is the saying: "Use the talents you possess; for

the woods would be very silent if no birds sang except the best."

S1 btistical culture does aim to support the search for excellence. Criteria, should be

developed to rate good statistical practice as either average, superior, or exceptional; one

criterion is whether it is done at the level of "what," "how',," or "why",

STATISTICAL CULTURE LEVELS THEOREM: CONSUMER, APPLIER,

CONSULTANT, COLLABORATION, THEORY AND METHODS DEVELOPMENT. To

promote the practice of statistics, % a prooe that it is -seful to identify five levels of

practice, defined as follows.

I. Statistical consumer:

knows definitions of statistics;

appreciates the concept of variability (distribution of outcomes);

has the ability to understand statistical models and graphical presentations of data

analysis;

does not have a working knowledge of statistical methods or the ability to carry out

a statistical analysis;

appreciates the role of statisticians in the battle for statistical literacy (competence i-n

understanding, applying and advancing statistical reasoning).

Statistical literacy at the consumer level can be defined to be knowing that public
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policy should be based on answers to the questions: "What can happen? What are the

odds (probabilities)? How do you know the odds?"

II. Statistical applier. Distinguish two levels:

II(A). knows basic statistical methods used to determine and obtain needed information;

ability to use menu driven statistical computing packages; fits all problems into con-

venient routine statistical conceptualizations;

II(B). ability to use command driven statistical computing environments;

understands the assumptions underlying statistical methods and can adapt statistical

methods to provide ad hoc methods for problems at hand;

Scientists and engineers involved in research or development should be statistical appliers;

those that become more statistically self-sufficient can become more responsible to be their

own statistical consultants.

III. Statistical consultant:

skilled in transforming data into information;

has the ability to examine facts and serve as referees of statistical analyses;

aware of the most modern statistical methods;

not actively involved in the scientific language and perspective of the problems being

studied so that conversation between client or customer and consulting statistician is

less a dialogue and more a monologue;

requires abilities to interview clients to obtain an understanding of their problems,

and to communicate with clients by oral presentations and written reports;

often advised to use simple techniques for scientists unable to appreciate subtleties of

statistics;

helps contribute to research on the consulting process.

IV. Statistical collaborator:

statistician is a collaborator on the project and is a catalyst and potential advocate of
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actions and directions to be pursued in the project;

collaborative research often (if not always) leads to joint publications and/or joint

research grants;

has mathematical training adequate to understand the philosophy and vigor of statis-

tical methods but not completely the rigorous proof of their theory;

has ethical, administrative, and diplomatic skills, especially those required for large

scale and long term research projects;

helps contribute to research on the collaboration process.

V. Statistical theorist:

inevitably mathematically well trained,

seeks to develop and teach the logical structure of statistical methods, to understand

how they are born and how they die, how they can be made to work better and why

they work;

basic research in general methods that provide analogies between applications;

fundamental research in analogies between methods (patterns which general methods

share with other general methods);

mathematical research on the properties of statiutical methods can be considered an-

other level within the theory level.

OLKIN-SACKS 1988 REPORT: The distinction between consulting and collaboration

is based on how "equal" the statistician is regarded as a member 4f the research team. Olkin

and Sacks (1988) used the names "advisory collaboration" and "interactive collaboration"

(or Type A and Type B) for what we call "consulting" and "collaboration". We quote the

report (p. 12):

"ITypically, the statistician engaged in advisory work will adapt existing methodology

to the problem at hand and create computable versions of known techniques. Another

mode of collaboration is much more interactive in nature and involves work to develop
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novel techniques and methods to deal with broader substantive questions. This second

type of collaboration leads to research on statistical issues that may subsequently advance

knowledge both in the substantive field and in statistics Itself.

"The survey responses indicated a high frequency of Type A research, while sounding

a common theme that Type B research does not receive sufficient time, money, or recog-

nition of its value. The short-run 'advisory consultation' rarely becomes the 'long-range

interactive collaboration.' Yet It is the interactive mode that has the greater potential to

break new ground and lead to statistical innovations of far-reaching significance for the

future conduct of science, and it is this type of collaboration that the panel feels must

receive the attention of the disciplines and of NSF and other funding agencies."

STATISTICAL CULTURE APPLICATIONS THEOREM: Another map required to

guide the practice of statistics, called a Statistical Culture Applications Theorem, Is given

in Table 1 which lists disciplines represented in cross-diciplinary research involving col-

laboration by faculty members In "statistics programs" In universities. The fields and

percentages are vaguely adapted fr )m Table 5 of the Olkin-Sacks report. The conjectured

percentages are intended to motivate passsionate discussions (and, eventually, research).

An interesting research program is to investigate the proportion of new degrees in statistics

that take employment to apply statistics in each discipline listed in Table 1.

The interests of statisticians may also be studied by investigating the distribution of

1987 doctorates among broad fields of statistics (see Cox, Voytuk, and Hart (1989)):

Probability and Math Stat 143

Biometrics and Biostatistics 37

Psychometrics 9

Econometrics 25

Social Sciences Statistics 49

TOTAL 263
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The racial/ethnic composition of mathematical doctorate degree recipients in the pe-

riod 1975 to 1986 was as follows:

White Black Hispanic Asian

Math Sciences, total 89.8% 1.4% 1.4% 7.1%

Prob & Math Stat 85.9% 1.5% 1.5% 10.9%

The percentage of degrees to foreign citizens Is 40% in statistics and 45% in mathemat-

ics. The percentage of math-science doctorates working in education is 50% for statistics

and 60% for mathematics; 25% of statistics doctorates are university faculty members.
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Table 1: Disciplines Where Statistics Is Applied
Disciplines Represented in Statistical (and Time Series Analysis)

Cross-Disciplinary Collaborative Research

(Conjectured Percentage of Statisticians in Universities Involved in Collaboration)

Health and. Life Sciences (25%, 25%)
Medicine
Public Health and Epidemiology, Blostatistics
Biology
Ecology
Fisheries and Wildlife
Environmental Sciences
Pharmacology and Toxfocology
Genetica
Entomology
Forest Science
Physiology

Engineering and Mathematical Sciences (15%)
Engineering
Computer Sciences
Operations Research and Reliability
Mathematics
Signal Processing
Image Analysis and Pattern Recognition
Industrial Statistics
Defense Statistical Standards
Hydrology

Behavioral and Social Sciences (15%)
Psychology, Cognitive Sciences
Economics, Econometrics
Education
Sociology
Political Science
Sample Survey
Government Statistics

Physical, Chemical, Earth and Atmospheric Sciences (10%)
Chemistry, Chemometrics
Geology, Geophysics
Physics, Astronomy,Chaos
Meteorology
Oceanography

Agriculture (4%)
Animal Science
Soils and Crop Sciences
Agricultural Economics
Veterinary Medicine
Food Science

Business Administration (4%)
Finance
Forecasting

Law (2%)
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STATISTICAL CULTURE RESEARCH PROBLEMS:

DEFINITIONS OF STATISTICS AND STATISTICAL SCIENCE. Is a suitable defini-

tion of statistics (which Is similar to that of McPherson (1989), p. 224) "form expectations,

make observations, compare observations and expectations, continuously improve"? Is a

suitable definition of statistical science "the science of analyzing data by varying conditions

(probability models and estimation criteria) under which one analyzes a data set"? Note

that laboratory science learns about a phenomenon by varying the experiments conducted

to generate observations about the phenomenon.

EFFECTIVENESS RANKING OF STATISTICS PROGRAMS: Statistics programs

in U. S. universities are usually ranked by their contributions to research in statistical

methods and theory, Should they also be ranked by their effectiveness with regard to

their success in adding to the U. S. work force new degree holders (bachelors, masters,

doctorates) who have received education to practice statistics at the various levels we

have identified? Should we regard as unsatisfactory the following current appropriate

proportions being produced on the average In the U. S.

consumers (pre-calculus course) 800/10000

consumers (post-calculus course) 200/10000

appliers 100/10000

consultants 10/10000

collaborators 4/10000

theorists 2/10000

One category in which It Is particularly urgent for statistics programs to Increase the

number of students is consumer (post-calculus) courses since this is the source which

suplies candidates for all other levels of statistical practice. Desirable goals for the fraction

of students in introductory courses who are taking a course with calculus prerequisite is
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30%.

UNDERGRADUATE EDUCATION: Provide students with a grid of introductory

courses in statistics which introduce the elegance and utility of statistical thinking, meet

the needs for training at various levels of statistical literacy, are appropriate to students'

scientific Interests and mathematical backgrounds, and meet the goals of training all work-

ers to become statistically literate at the consumer level, and many researchers to become

statistically literate at the applier level.

The television series "Against All Odds" provides excellent supplementary material

for undergraduate statistical education. An exposure to the methods and applications

discussed in "Against All Odds" can be defined to be a superior grade of statistical literacy

at the consumer level.

GRADUATE EDUCATION: Design graduate education in statistics to successfully

provide training at each level of the practice of statistics, and which educates graduate

students to have broad interests in applied, theoretical, and computational modern statis-

tics. Students should have available courses in statistical culture which expose them to

the role played by statistical methods in each of the disciplines listed in Table 1.

One of the important expected benefits of the study of statistical culture is to help

the development of communication, mutual respect and cooperation between statisticians

Involved with various levels of practice of statistics. Graduate students in statistics come

from an extreme diversity of backgrounds. The study of statistical culture would actively

encourage them to communicate more with each other (u well as with their faculty) about

the expertise which they should acquire as students and also during their careers. Such

discussions should be part of the graduate curriculum in a first year course (which could

be called Statistical Forum or Statistical Culture) which would also help students decide

about whether they want a master's or doctor's degree.
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STATISTICS AND RELATED FIELDS: Identify the relations between statistics and

mathematics, between statistics and probability, between statistics and computing, and

between statistics and the design of scientific Investigations.

STATISTICAL VITALITY: How much of the current vitality of statistics derives from

the availabililty of jobs in industrial statistics, biostatistics, and environmental statistics?

Further, how do these areas of application compare with regard to the comparative devel-

opment of the various levels of statistical practice?

THE URGENT NEED FOR MERGERS OF STATISTICIANSI

Statisticians In the United Kingdom are currently calling for a more unified less con-

fusing public image of Statistics by merging the Royal Statistical Society and the Institute

of Statisticians. Statistical Culture is the study of how statisticians of various levels can

successfully merge.

If we want to successfully achieve "Viva Statistical Science" is It a prerequisite to also

successfully achelve "Viva Statistical Culture"? I believe that the answer is an unequivocal

yes if we take a. our motto "Always remember... Statistics is Fun" (where fun can have one

or more of the meanings: fun (elegant), functional (useful), functional (abstract analysis),

function (graphical), function (estimation), fundamental).
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PROCLAMATION

City of College Station

WHEREAS, there is no future without statistics,

WHEREAS, the future of our nation requires every citizen to have statistical maturity to

understand and implement decisions Inevitably based on the analysis of data,

WHEREAS, students planning careers should be made aware of the importance, relevance,

and beauty of statistical science,

WHEREAS, to help accomplish the above goals the week of April 23rd - 29th has been

proclaimed National Science and Technology Week and Mathematics Awareness Week,

WHEREAS, to stimulate awareness of statistics as a discipline at the interface of science

and mathematics, the Statistics Department of Texas A&M University is organizing a

program for Statistical Science Awareness Day on April 21, 1989,

NOW THEREFORE I, Larry J. Ringer, Mayor of the City of College Station, do hereby

proclaim April 21, 1989 as:

"STATISTICAL SCIENCE AWARENESS DAY"

In College Station, Texas, and urge all citizens to study the proposition that quality
of life in the high tech world of the future requires each person to have some level of
statistical maturity.

PASSED AND APPROVED THIS THE 13th DAY OF April, 1989.
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0. Preliminaries
In this report, some techniques for studying random mappings and related problems are dis-

cribed. This summary concentrates primarily on methodology developed by the author. Conse-

quently, the work of other scientists, active in this area, will not receive extensive treatment in this

report. A nonnograph is in preparation, which will give substantial treatment of the history of the

subject and an extensive bibliography.

The present report will concentrate on two methods used by the author to obtain result in the

theory of random mappings.

The first of these is the use of classical combinatorial enumeration methods. The second ap-

proach is the use of a "composition theorem" to construct generating functions. The later technique

has wide generality, leading to many distinct results upon specialization of the parameters.

1. Introduction.
Let X. be a finite set with JXJ n n and let T, be the set of all mappings of X. into X.. If

ot e T.', then define (bi ./) (z) a a(P(z)) for every x £ X•, With no loss of generality, we can

take X, - (1, 2, .... , n), (It will be convenient to introduce some exceptions later, for which the

choice X. - (0,1,..., n) has some minor advantages). Clearly ITI - ro.

Let PT. be a probability measure on the subsets of T,. Various mathematical models are obtained

by appropriate choice of Pj,. When there is no risk of ambiguity, the measure will be denoted by

P.

2. Representations of the mappings.
-In this- section-we-inb'due..twe.addidional .representations forea mapping oiT,, which are

useful in many applications.

First, there is a one-to-one correspondence between a class of labelled directed graphs G.,

known as functional diagraphs, and T., the set of mappings of X,, into X,•. This can be demon-

strated as follows. Fix acT,, and let =eX,.. The if *(m) = y, draw the directed edge from x to y.

Such a graph will have vertex set X,, and have exactly one edge emanating from each vertex. These

graphs are in fact characterized by that property. Similarly, if a labelled graph whose vertex set in
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X,, is given for which exactly one edge emanates from each vertex, define a(z) as the terminus

of the edge leaving x for each z=Xn, Because of this isomorphism, we will identify each mapping

with its corresponding graph and employ the same notation and terminology for both.

Another representation may be constnucted as follows, Let A,, be an n x n matrix constructed

as follows, If at(i) - j, then let aq - 1, otherwise let ao - 0, Such a matrix has exactly one
"one" in each row. Also, assume there is an n x n matrix of "zeros" and "ones" with exactly one
"one" in each row. Then, if the "one" in row i is in columnJ, set C(i) j, i = 1, 2,...,M

The three representations, the mapping, the directed graph and the matrix can be used inter-

changeably.

3. Properties of Mappings.
Let acTt be a fixed mappping. For every cX, define zo = x, x I - O(Z),X2 =W ) ..

C92(X),. .... That is, In general lot x.. I = a(XMn) = CNI(MI) = a"÷(X1*IZo), for all M ýt 0.

If for some m 0, a(m) = y, theny Is the mth image of x; the set

SOW (= {Z, X,.,...

Is the set of successors of z under a.

If for some m : 0, a"'(x) -a V, then y is a mth inverse of z under a, In general, am"( x), m <

0, may not exist or may not be unique.

Let

P&(x) is called the set of predecessors of x.

If there exists an m > 0 such that al(z) = x, then x is said to be a cyclic element under ,m

and the set

is the cycle containing x. The least such m is the length of the cycle containing x. If z is not cyclic,

define C,(x) = I. The set of cyclic points under cv is C, =• C,.(z).

59



If thm'e is an r > 0 and an a > 0 such that

09(z) -0(0,

then x and y are equivalent under a. It is easy to see that this is an equivalence relation and

the equivalence class containing x, K.,(z), is called the component containg z. This equivalence

relationship decomposes X, into equivalence classes, which are called the components of X, under

a. If X,, w K.( z), then n is said to be connected (more precisely, the graph of a, G., is connected).

Also it is easy to see that each component has exactly one cycle.

Fix z and consider the set {x, a(x), a2 (GO, . . ... Since vX. and IX,,d = N this set can have

at most n distinct elements. Hence there are r ! 0, a > 0 such that ar( X) = a*,( z). The set

a(, X) , a' ( X),. -. , a÷''-I (x) } is the cycle in the component K.( x).

A vcrtex xcX. is said to be of height m under a if m is the least non-negative integer such that

a0"(x) is cyclic. The set of vertices of height m is called the Mth-straturn of a, S,,,,,. Also, the

height of a is defined as

Ho, - mi~x{8",,, ,

Note that So,. is the set of vertices cyclic under z, Ca.

The restriction of a to C, defines a mapping, which we call the permutation induced by a. This

mapping, denoted by a*, is a permutation on a subset of X. of cardinality ICa,.

Finally, we introduce the notion of the order of an element acT'. Consider the set of distinct

elements in (a, a ',...}. The cardinality of this set is the order of a. 11 a is a permutation, this

reduces to the usual definition of the order of elements in a group. We denote this by 0(ca) and it

is well-known that

0(a) - 0(a*) + max(0,H. - 1).

4. Mathematical Models.
In this section, we provide illustrations of some of the commonly employed choices of PT. and

the mathematical structures that they describe.
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1. Let P{=((i) - j} - - 1,2,,,.,nand let the random variables a(i) be mutually

indpendenL. The Pý, is the measure which assigns probability nf-0 to each mapping in T,.

We will refer to this as the symmetric case.

2. Let P{a(i ) -) = ,if j ' i,P{a(i) a i} - 0, andlet a(i) be mutually independent

rarndom variables. Then P2 .. is the measure which assigns the uniform probability distribu-

don over all mappings with no fixed points.

3. Let P{a)} a nI-1 if a maps X,, onto X, and 0 otherwise. Then Pr. is the uniform measure

over the set of permutations on X,,,

4. lt P{a(i) - 1} a p and P{a(i) -(i) beindependent

random variables. Then if p > •, the set of mappings is known as mappings with an atractng

center. If p < •, these are referred to as mappings with a repulsing center.

Other assignments lead to random rooted labelled trees, forests of random rooted labelled trees,

random connected mappings, and so forth.

In the sequel, we restrict to the symmetric case. The other cases will be teated in the more

extensive manuscript, which is in preparation.

5. Probability Distributionns for the Symmetric Model.
For this case, PT. - n-" for every mapping acT., We first establish theore-m 1.

_DQeorem 1.
(n-.(x I) -• kI . z aP{I~a(X)I=k,ILg(=)I=J}-~ 1!m (5.1))

1 ! j ! k :5 n where L,() is the cycle in K,(x);

(n- 1)1k
P{IL.(x)" Ik} = (n-k)1m/) (5.2)

S(n - k)!
1(5,3)
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also

IL.(z) I - E{Io(z)I + 1}/2. (.4)

Prf. Since the probability that (i) a JJ - 1,2,..., n, i = 1,2,..., n is n1r and the

images of each element i are independent random variables, we have:

P{IS,(z)I = k, ILa(x)I = J)

P(al(x) # z, c(x), ... , ,a"'-(x),O0 < r • k - 1, a'(x) =•Jx
(n- 0) n,

(n-k)l

verifying (5.1); (5.3) follows trivially. To establish (5,2), one need only sum (5.1) over,

I < 2 • ck. To establish (5.4), note that EIL.( x) I I IS.(z) I = k} -) , therefore,

Es(){Iu I IIS.(S)) -r k} {IS-('>l ÷)!2 }

The following theorem will be repeatedly employed.

Tbheorem2. The joint distribution of lSo(ai)1, ISI(ct)I,.., ISt (ax)I is given by

P{ISo(cx)I "no, IS,( ) 1 "m,..,l,l$.icxI-t n(-1" t}

_ n _ t .. -(55)

where

iuo

ftmf. ISo (x) I n n if and only if" a is one-to-one and onto; hence we obtain n n-", which

coincides with (5.5) when ISo(a) I - n.

Otherwise, assume I8o (a) I < n. Then, • is the number of ways of partitioning X,,

among the various strata. The m, elements in So (at) can be permuted in no I ways. Next for each

stratum S(a), with S,(a) I - N,, them are ,t" ways for the N.t elements in So+.c(a) to have

images in Si(a).
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&MAz. If somestaturm, say S(a) = ,then (5.5)-Ounlessg$÷1(a) - ... - ,,(ci) -

Theorem 2 is basic to many items in the sequel. Marginal distributions available from Theorem

2 are the distibutions of the number of cyclic points, the distribution of the height of the mapping,

the distibutions of the number of elements In each satrum and the order of the mapping, The

following lemma will prove useful in many application of Theorem 2.

Lemma ... For all complex z and arbinary positive itegers q,

q I It _0(56)z(z +q)q'" z l .,,t "
"owl It I.÷M.I,

LI,...,L IM 1

Pro. If q = 1, the conclusion holds trivially. Therefore, assume that it holds for 1,2 ,...,

q- 1,q ý. 2. Now

z(z+q)4-1 -- zI ( )ll'iq'. ,

Z4 + q /t I,(i + (q- 1)-11" it
Since 1 g q - I1 : q - 1, the induction hypothesis applies and we get

q-1 ( __) I-" (q-_ )z(z +)-"..÷ + F,• E E •; • " M
1101 It Mal h ,,,L¢ •

(qL+ z j1
2

"Sul Itul • .. ÷ ,.. -l
I qI+ E E. III...L 1

U=2 It,+*Iw- '

Since z' is the term for M 1, the induction is complete and (5.6) is established.
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We now have:

l3•=rITU . The distribution of the number of cyclical elements 1C.1 is given by

(,•- 1)•j(5,7)P(ICOI = jY = (n-_ I)I 5.7

Prgf. From Theorem 2,

P(IC.I -J} a P(ISo((a)l -I} )

Sjltt I, ,,... - J'Jl'r" 0* ,, n,. --

the sum running over all partitions of n -j. We rewrite this expression in terms of non-empty

partitions obtaining

P{IC.I =/0 J ) .tn, 1 ...,":r- I ?rot'" (-,B-

the sum running over m' , 2,..., n- I, 1, ,..., m,, 1 with t n• -n-j. Acomparison

of (5.8) with (5.6) show that this is related to (5.6) with q replaced by n- obtaining

P(ICi = J) ('+-))!

"(n-f)! ,

establishing Theorem 3.

R Note that (5.7) and (5.2) are identical. There does not appear to be an obvious expla-

nation for this coincidence.

Theorem 4. The probability distribution of IP.(z) Iis given by

P(-P-X I t) )l/Jj-2(On - j) j," 2 n (5.9)
P(IP.(:•)I~ ( = j) I (,, t(, - 1)t.- 1 / ,,..

Eoof. For j > 1, let X1,-t be j - I specified elements of X,,; we can designate these as

X: ,z2,... ,I x:j. Lct x be a distinguished element of X, not in Xp.. 1 , Lei T-1 be the set of mappings
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a in T. with a(X,, - (Xj-. U (z})) u X9 - (Xy-i U {x}). Define T2 as those mappings ci with
a(Xj-0a) "Xji U z} and ahzj x for somek > 0. LetT -Ts 1 nT2, Then

P{IP(x),I}' (n-i )P{aeT*., forj>1,

and

P{agT*} " P(C•,T,}P{(aT2)}
First, we have

p(•,(in - )_" -
Therefore, we need to calculate P{acT }. This is accomplished by restricting attention to Xj-.

and defining the mapping a' satisfying ai'zx - az, i - 1, 2,... ,1 - 1 and a,'. - z. That is, a' is
the restiction of a to .y....., x- and x becomes a fixed point.

Thus

P{aieT2} 1 (j"n. Z (5.10)•cr•~ ~ n I - , ...- n.1
the sum running over all non-empty partitions of j - 1, From lemma one, the sum in (5.10) can

readily be evaluated, obtaining
P{QCT2) -2

and hence

P{IPO(x) I- -M -, j) .,',n

establishing (5.9), for y> 1.
Ifj - 1, then {X,..} - {(} is mapped into {X,,} - {z}; there are (n- 1)'t such mappings,

which also yields (5.9).

Trivially, we have
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kmuk If IP..(z)I I n, then x is cyclic and a is connected. This event has probability 4-1

by (5.9).

Corollary I.

6. Asymptotic Extimates in the Symmetric Case.
We now obtain the asymptotic (n --* oo) probability density functions of I&$( ) l, IL( z) 1, 1I.,

Accordingly, we establish the following theorem.
Theor 5. The joint asymptotic (n -- oo) probability density function of isI L&. i

given by

f(u,V) =a- ' 2/2, 0 <V5u<oo, (6.1)

where u -I9i 1

The asymptotic (n -- oo) probability density function of

. a IS•(X)I//VO•

is

fU U > 0. (6.2)

The asymptotic (n --* oc) probability density function of

is
f (v) = 2vl-( 1 - 0(v)) V > 0, (6.3)

where ,* (v) is the cumulative distribution function of the standard normal distribution. Specifically

O(v) 2 T)-fe-:/2dx.
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hnf. In (5. 1) let k a Vqu, I - V4-v and replace the factorials using Stirling's formula. This

gives

e- N.

n1 'l ,I-•) .-v•÷

Expanding log ( I - u/y/n) is a power series, we get

f(u, V) -'/2, 0 < V u < oo.

(6.2) and (6.3) are obtained by calculating the corresponding marginal distributions.
From these asymptotic relationships, we can obtain the following corollary.

Corollary 1. The means and variances are given by

E{IL.(x)}~ i(27rO), a2 (IL.(x)I1) -n[.- J (6.4)

E(ISo(x)1)} 1-(2,rn)k, T(IS*(x)1)~n[2 - (6.5)
and

E{ICaI} 1~(2 wn) i, a2(IC~I)-n2 , . J2 (6.6)
7. The Composition Theorem.

In this section, we give an abbreviated treatment of the composition theorem. An extensive
discussion of this theorem and some generalizations of it will be treated in the future monograph.

Let S' be the symmetric group on { 1,2,..., k) } To.ycS,, we can associate a partition (ri, r2 , ... .
where r, is the number of cycles of length r. Clearly • ir, = k. The k-ruple (rl, r2,..., r,) will
be referred to as tho , bM of -y. A subset A4 of Sh will be called self-conjugate if and only if
it is the set of all permutations in a subset of the possible classes. It is easily seen that for every

AcSk, XMk',- a Mk. Now let W, be given self-conjugate subsets of S, and let wk - IWI,,o W O
and let w denote the sequence (wA }r'0, Define

0.•( z) - E kz4kl (7,1)
*MO
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Let Wk., k g n be the set of all yry- whe yii a one-to-one mapping of X into X,
and 'eWk. Now we enumerate the set of aeT. with

1. aWWh, for some k < n

2. oiT,,, the set of olc of height < g

The number of such mappings aeT, will be decided by V•,p, where Vjo = 1. Also, we denote

Vw,•, by Vw,,.

Theorem 6. If n 0 andO .<a/ < n

Vwj, - Ekolktll... /whky hk ..I;1t,(,) !
where the sum runs over/ko + ki +... + ky- = A, ko,... , k >0 (.72)

ftg. This is an immediate consequence of Theorem 2. The following corollary is often very

useful.

Corollary 2. Let V%,. be the number of *cT with acWh., k fixed and 1 k 5 &.

Then

-'n V~h,3  (7.3)

k- I

•.. The proof follows readily from Lemma 1.

We now define

and
•W,J(Z; to~t,... ,-j = fty) F , w,n( to, ti,..., t4)z/Nl. (7.6)

This leads to Theorem 7.
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wo,(z; to) * 0w(zto) (7.7)

and for, j1
'Pw WaZ; to t I. ,tS) ="',a- I ( Z; to, t I,.. ,t-2, tS- 1t (7.8)

ReM This theorem can be established in a formal algebraic sense. To obtain an equivalent

analytic formula, one needs to restrict to Izty.-I e"iI < e-1 and max {k.to I,.., Iztl) < e-1. Such

details ame omitted here but ame essential for asymptotic analysis.

ingf. Write

"Puti(zito )ti f... ts)- ,• • o•t /j,(r,¢
"0 1.a0 kee.,,41.1 okl .. k" ' ,n q

,Wj •ot(k•otj)h'• . .. (k/j-2 tj-j) )1'kj• ,-jtS)"-I

- f w S D&t'(koti)k' .. .

"E~ Ok.,,)

• j V'j-1,f (to,.., ti-2, •t-1e•O
zqO

Let Ao(Zo) zo,AI(Zo, z, z oo) andforj Ž 2 let

^ ( zo, zi, .. IZj) = AS- I ( zo, IZ , .. zJ_2, zs. e•).

Theorem 8. For j l 1, we have

(.o, , . , -( , . z ) (7.9)

Eg. The conclusion is immediate for OR I. Assume that the result is valid fori - 1,]j 2,

Then
A j(zo , I z ,. .. , z d) n Aj- •( Zo , 21 ,. . xS_- , ZS.- 19

-zo exp {A•_= (ZO Zo, P• ... - PZJ, Z/_ e"•)}

zo exp{Ai-I(zo, z2,...I zJ_, z..)}
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establishing the theorem.
We now state and prove the composition theorem.

,Teorem 9.

", ,j(Z; to, t ,..., tj) - ( j( sto, ,... ztj). (7,10)

Ed.. For J a 0 this is a consequence of Theorem 7. Also from Theorem 7,

1PWj(M; to, t , I . ,ts) U', -,, -( X; to, ti, , ti .2, tj-le'tl)

Therefore,

- V~j_ I(Z; to itj, ... ,t tj_2, t-_ Oatl) a Ow(AI-1 (zto, .. ,zty-2, ztj_j eat/)

-O(A, (zto, , ztj.,* ztj_., ztj)).

The following coroUaries can now be easily established.

Corollary 3.
SW,,,(z; to,.... Itj) A) , ( • zto,.. ,ztj)) (7 t1)

Corollary 4. LetAj(z) - A,(z, z,... ,z). Then

j(z) - 0,)(Aj( )) - • V~j,.*"/,•iI, (7,12)

where Ao(z) - z and forE I

Ai(z) W ze'iJ-•', (7.13)

.Corollary, 5,. Let V.,.,k be the number of mappings ci.T, with ae hW , oi.,) and 1C.I - k.

Then
V~"k l,, ( )(Aj(ztz,,, z)) (7,14)

The composition theorem provides enumerating formulas for mappings satisfying the hypothe-

ses of Theorem 6. For such mappings it permits enumeration by number of points, number of

points on cycles, number of points in each stratum and so on. The ability to choose W, provides

the generality of the results. Illustrations follow.
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Example 1 Let Wk be the set of k cycles, then the set of mappings considered is the set of

connected mappings.

Example 2 If Wk be the identity mapping for k - 1 and Wk - •, k ý 1, the set of mappings

is the set of rooted labelled trees
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HANDLING UNCERTAINTY IN INPUT TO EXPECTED VALUE MODELS

Mark A. Youngren

Requirements Directorate

US Army Concepts Analysis Agency

8120 Woodmont Avenue

Bethesda, Maryland 20814-2797

ABSTRACT. Due to the large number of entities and processes that must be represented, combat

models at tie theater level in the Army today are expected value models. An expected value model is

deterministic -- it uses the expected value of random variables as inputs and generally uses some sort

of expected value within the internal processes. The use of expected value models creates problems in

the proper interpretation of their output and ways for representing the uncertainty associated wil i

the model input and processes.

This paper suggests a method for haiidling uncertainty in the input data sets (which usiially

contain elements that are specific realizations of random processes) in situations where the out com-.-

of interest can be expressed in binary variables (e.g., "success" or "failure"). A theater nucf':i,.

exchange is used as an example, having many different possible outcomes determined by randomn

processes. A method is provided for describing the space of all possible outcomes of the exchange and

partitioning the space into sets of outcomes which, if used as input into a theater-level conventional

simulation, are expected to lead to significantly different results. A method for sampling the imio-

probable outcome from each set is also explained.

This approach permits the construction of an experimental plan that requires a small numbl)er of

model runs. each run expected to provide a significantly different result. From these runs an

estimate of the variability in the theater combat resulting from uncertainty in the input data (in

this case. the impact of a nuclear exchange) can be made.

1. lntroAtiction. Modeling large systems and processes such as combat at the theater level is diflac-1li.

"t'h n it.mijber of possible munits and interactions has driven most modelers to use an #:xprr dchd uah,

a)pproach. An expected vahle model iises the expected value of random variables as inpult> ami

ge,,n.ra lIy nusos e sori of ,,xpcteld vahlie wit hin Ith int: 'rnal roressvs'. The I ot,.t .tr,.
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determiniatic; that is, they will yield only one set of outputs for any given set of inputs. The use oL

expected value models creates problems in the proper interpretation of their output and ways for

representing the uncertainty associated with the model Input and processes. In a recent discussion

paper, Stockton (1989] provided the following example:

"A Red unit will go northwest or northeast based on whether his strength at a given ponit, is

above or below some threshold value. Let's say that the real-world probability of being above the

threshold is 0.6 and, if above, he will go northwest to face a very strong Blue force armed with

Supertank. If he goes northeast (probability 04), he faces a relatively weaker force, armed with bows

and arrows, With several replications of a stochastic model, expected losses will consider bot.h

possibilities and will develop expenditures of tank ammo and arrows; with an expected value model,

he will always go toward the stronger force, and no expenditures of arrows will be observed."

Stockton correctly points out that the results of an expected value model, even when provIdd

expected value Inputs, are L the expected value of the output. Ile suggests that the output of sich

a inodel may be a "most likely value," using his example., However, we can offer another exmmploh

which illustrates that expected value models also fall to provide a "niost likely" result,

Suppose In the example provided above that the Red force has a visual sensor that call He nIl ,)I

the Blue forces traveling together (with probabillty 1) if' the skies tre clear, aoid cannol .,, fiiY ',1,

the Blue force if the skies are cloudy. To siilplify, Sul)ppose that. the skies are eit.her c lea or ) iIly

and the probability that the skies are clear is 0U6. llow many Blue units are detected by the Pivd

force? The expected value is 0.6 , (100 percent of the Blue units) + 0.4 - (0 percent of the lIlut,

units) = (0 percent of the Blue units. Expected value models will normally apply expected vuluuw,t

either as inputs to the model ((30 p)ercent. would be ali expected value for the probability of wit+r,

acrtiuisitioli) or iiltertull Io thle pro,'rsses. Note,. however, that nequilrilig till perel-lit. of tle h k l r'. i.

the IZt likely outcome, as it. occurs with probtability 0! E'ven if' we chose Lhe most likely rusult ol

100 percent detection (which is not the way that expected value models generally handle cout.iuuiiiu

variables as opposed to choices), we run into problems.

Now let us combine the two examples. It is reasonable to suppose that if the Red force can see

the Blue force, or even a large percentage of the force, it will notice that one force Is armed with

Supertank and the other with bows and arrows. Thus, given detection, it will engage the wiuukifr

(bows and arrows) force, If we, have the mohdel take the most. likely values in tOhe two emaiiuplhs. it

will (1) detect t00 percent. of the Blue force and (2) go northwest, to engiuge t-he B~luue fore,., I-'Ilh

result, is by itself most. likely, yet. hI re'suult is t lIeI tilost. unllikely. Even it' one modeled t lio lh.d I'm 'i-
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detection at 60 percent, the combination of a 60 percent detection (still sufficient to distinguish

between Supertank and bows and arrows) and moving northwest is unlike'y.

Admittedly, these examples are simplistic. Yet it is true that expected value models not only fail

to yield the expected value of the output, they also fail to yield the most likely output. What, then,

is the probability associated with the output of an expected value model? The answer to that

question, unfortunately, is "nobody knows." This is why expected value models can yield

counterintuitive, contradictory, and/or nonsensical results when initially tested. The usual approach

when this occurs is to adjust input data, processes, thresholds, etc. until the model yields

"reasonable" results, llopefully tits yields a model that will provide suitably realistic results with a

different input data set, but there are no guarantees. We unquestionably have no way of determininig

the likelihood of any given output from a comp)lex expected value model.

2. Sources of Uncertainty. There are two areas of uncertainty properly associated with all expected

value model that must be handled: uncertainty in the model input, and'uncertainty in the model

processes.

Unfortunately, a "blessed" input data set is often regarded as certain - if we have approval 'or o

set of numbers to be used in the study, then those numbers are the set* to use to support o)mr

analysqis. Excursions from the base data set, fbr purposes of analysis will vary otn!y a sinali inoltl,,r 4,,

data itenis by design: the others remain fixed. Some input data values arv truly fixed: ti eh :

distance from Bremen to Munich is an example. Other values may be fixed by scenario; for exarmple,

the daylight hours vary by latitude and time of year; a scenario wvill fix a time and p)lace that. will in

turn determine the appropriate value for daylight. Unfortunately, these scenario-driven items ;ire

often fixed arbitrarily, even when they may hAwve an impact upon the analysis. For exampl(% i.' :I

Ibr', is particularly vulnerable to dv,'eetioi hy' a siesor that rr. di,. (Iyylight, yo ll van , '

results in a sunmimer versus winter scenario (which will in turn be different than that. obiniied i.in.hii

an arbitrary number like 8 hours or 12 hours). This difference may even be apparent in studies that

seemingly are not associated with detection -- amino rates could be significantly different, for

example. This is a simple, obvious example: many others, not so easily identified, exist. WVe must.

regard the innut data set as a single realization of many stochastic variables. It is not always clear

which realiza" n to select for use -- averages do not always exist and may no, be appropriate.

Furthermore, correlations exist. betweeii sets of these data inputs: for example, selecting the mo(st

likely or expected values of cloid (ovvr and rain independently may yield the cotl1iliat ion of .iiiiv

with I iich of rain! Noit Otin t his prob'liim exists with stochastic Mollnlte ('ado) nlhodel., -h t hey .1)

require a fixed d(ioa st that is no, varied from run to rmu.
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Uncertainty also exists in the model processes. Stochastic models generally handle this

uncertainty through random number draws, although they are also subject to problems associated

with correlations (separate random number draws generally require independence) and fixed values

such as thresholds. The examples provided above illustrate some of the problems associated with

handling process and input uncertainty within an expected value model.

3. Addressing Uncertainty in Expected Value Models. At this point, it would be nice to be able to

make a statement like "the solution to this problem is easy; one simply needs to... ." Unfortunately,

there are no simple, universal solutions to the problems associated with addressing uncertainty in

expected value models. It Is clear, however, that any methods that might alleviate the problem must

deal with the uncertainty associated with the data input as well as the uncertainty associated with

the model processes, Furthermore, the uncertainty in the input data justifies the following assertion:

executing an i.epected value model onil once for a given data set does not provide a meanilgfufl

result. If an expected value model i3 to be used to support analysis, the user must be prepared to

execute multiple runs, varying in some meaningful fashion the input data and/or the model

processes, in order to establish some measure of the uncertainty associated with the output of such ia

model.

Ideally, such an approach will minniize the Innmber of runs required (because running a large

expected value model can be very costly), yet. provide a significantly different result from eticlh runll.

thus increasing the variance across all outputs. WVe want to be able to describe the probability lhl

the conditions represented in the input for each run (or conditions similar to those represented) will

occur.

We have developed an approach to handling input mncertainty in theater-level expected vahle

models in situlations when the oiutcomies of interest call be expreuss''d in terms of binary \vari;i)l'':

i.e.. one can describe all events as -yes" or "no," "on" or 'off," etc. The particular application 1h111

will be developed deals with a theater-level tactical nuclear exchange.

Several models of conventional warfare exist at the theater level. The model used at CAA is

called the Force Evaluation Model (FORCEM). Like most theater-level models and scenarios,

FORCEM is a low resolution expected value model, representing combat forces at the division and

higher level and time in 12-hour steps. The Nuclear Effects Model Embedded Stochastically in

Simulation (NEMESIS) research at. CAA ( Youngren [1989]) documents an analytic model for

descrilbinzg the possible okutcon)es of a theater-level tnctii•d much'ar exchaniitge. 'Tihe ni,,thodlolly

described in this paper arose l'romn tOle need to sutitlmarize ii,' stochastic ollt('ollls of thew thll-atir-l,'\l,
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exchange as input to FORCEM.

4. The Scenario. In a theater-level battle where nuclear weapons may be employed, the commander

of the forces on a side may have an overall objective (such as stabilizing the forward line of own

troops (FLOT) in the defense or achieving a breakthrough in the offense) that will necessitate the

use of nuclear weapons. In order to meet this objective, the commander will specify the defeat

criteria against each unit -- that Is, the necessary degree of damage to be achieved against each unit

to meet his objective. The defeat criteria will differ from unit to unit depending upon the unit

mission, the posture, the equipment, etc, The criteria applied to larger units (such as divisions) will

frequently focus fires on critical subordinate units. For example, the defeat criteria for a unit might

be achieving a latent lethal dose (about 450 rad) against at least 50 percent of the personnel in the

unit. The defeat criteria for a particular division might be to defeat at least 50 percent of the

infantry units or at least 40 percent of the armor units in the division.

Although the effects of a tactical nuclear layclown at the theater perspective are normally

described in terms of defeating divisions, tactical nuclear weapons within the theater are targeted

against forces at the company and battery level, The ternm subunit (also target or target subunit)

used in this paper denotes a combat organization (such as a company) that would be targeted by a1

nuclear weapon. The size of the subunit will depend both upon the capabilities of the weapon system

Used to engage the subunit and the targeting doctrine of the fnrer. For example, cormal)nies maly lIv

targeted close to the FLOT using small. artillery-fired weapons, while battaliots may be targeted

deep using missiles or air-delivered weapons, For purposes of exposition, we will refer to the low-

resolution combat organizations represented in theater models such as FORCEM (usually divisions,

although other forces may be represented as well) as twits.

There are very inniiy targetable subullits ill a typ)ical theater scelnario, oil tile order of 10', A\., :

result, there are 21'* possible outcomes that can occur in terms of the defeat or failure to defeat •,ach

subunit. Even if we look only at the defeat or failure to defeat the low resolution aggregate units

represented in our theater model (usually several hundred), we still have on the order of 21'01

possible outcomes. Even with sophisticated techniques and considerable confounding, classical

experimental design approaches require at least one run per variable. The large amount of time and

effort required to execute even a simple run of a typical theater-level expected value model prohibit

more than a few model runs for any study. Classical experimental designs therefore obviously cati•ot

be applied. Our objective is to construct a plan that minimizes tile anumber of different inpitlt dat.a

sets (thus minimizing tile iitiiliher of thleter-level model nins) yet, fully reflects the range of posibll.

outconles of' the theater niclear exchange.
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5. A Method for Addressing Input Uncertainty in Expected Value Models. Describing the outcome of

the theater-level nuclear exchange on each unit in terms of defeat criteria allows us to define a

binary variable Bi, where Bi = 1 if the unit, is defeated; 0 otherwise. Given the assumption that the

outcome is independent between units, the outcome of any exchange is simply a set of O's and l's

with the probability that any Bi = 1 equal to Pdeiii(i), the probability that unit i is defeated, i =

1 .... m. Methods for easily calculating the probability of defeat for each targetable subunit are

given in Youngren (1989]. Given m units, there are 2 m possible outcomes. Clearly, if we define defeat

criteria in terms of total numbers of potential nuclear targets (on the order of 10'), there are too

many outcomes to enumerate.

At the theater level, however, defeat criteria can usually be expressed in terms of divisions and a

limited number of other high value targets -- on the order of at most several hundred across a

theater. Each division, In turn, will have its defeat criteria established in terms of units subordinate

to that division. For example, suppose that a division j has 10 battalions of infantry (engaged as

battalions), 24 armored companies (engaged as companies), and 20 batteries of artillery, The defewt

criteria for this division may be 50 percent of the infantry, 40 percent of the armor, or (30 percent of'

both, with a separate criteria for artillery (divisional and nondivisional). In terms of maneuver

subunits, 5 Infantry battalions or 10 armor companies must be defeated in order to defeat the
(10+2,4)l

dlivision, There are p (10-p)! qI (24-q)! ways of choosing p infantry battalions and q arrnor,'d

battalions for defeat, and all combinations where p Ž 5, q Ž 10, or ( p + q ) ; 60 percnt. (i t' i]w

subunit (which can be worked out for specific values of p and (I ) lead to the defeat of this tivisiiun,

If we assume that each subunit i, i = 1, ... , 34 has a unique probability of defeat P hfciit(1 ) we

probably do not wish to enumerate all sets of subunits where the division is defeated and cotupitto

t,,he joint probability (which will be the product of pdefe,,t(i) for the subunit.s i dekfeated and

(1 .- P1 • 1 ,( i)) for [he subunhits that are not.). Fortunately, this situation is readily nmenblah, 11)

Monte Carlo solutions. \Ve simply necd to draw 34, binary pseCidoraildoill niumbers lB such thlilt ,,:u'hi

number Bi 1 I with probability PhIe/ea1(i), and let a binary variable, say D,,, equal I if the set. of'

numbers B1 drawn correspond to division j being defeated, 0 otherwise. If we perform N replications

of this experiment, we can estimate P[ division defeated ] = Dk t If we do this for each divisionn•1
j, then we have a probability PdrA 4,I(div j) = P( division j defeated ] for j = 1, ... , ndiv, Where ndii'

the number of divisions,

At the division level, we can define a binary variable Oi to define the outcome of the nucl•ar

exchanige willh respect to division j, j = 1 ..... udit'. O = I with probability Pdd•, a(,lii j) if

division j is defented: 0 ot lherwise.
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Across the theater, the theater commander will desire at least a certain percentage of units be

defeated in order for the employment of nuclear weapons to be considered effective. We can define a

binary function of the random variables Q, 0( Q ), such that 0( Q ) = 1 if the commander's

objective is met; 0 otherwise. Clearly 0( Q ) is nondecreasing in Q. The function 40 may be regarded

as identical to a structure function of a coherent system in reliability theory (Barlow & Proschan

(1981]); thus we can use results frorm coherent structure theory in our analysis of the nuclear

exdhange issue.

For example, If any k out of in divisions must be defeated In order f' the commander's

objective to be met,

O(Q) = 010 2 ... II ( O102 , . .. 1 Ok+( O,•.k+l Om),

for all possible subsets of size k from the m units, 1 < k < mi, where

(x)[J,(x, ) a 1 - (1 -x )( 1 - xj ).

Furthermore, we can bound P[ 0( Q ) 1] by (Barlow & Proschan [1981] p. 31):

max P[ POj=1 ] :5 P[0( Q)11 !5 min1 P[ Oj=1]1 <5 r - npath i;, 1 :5 s :5 nrut i4_.

where P. denotes one of the npnth-( ) possible min path sets (in this case, a mrin path set is
( k osberi ct es(nti

any set of k units), K,, denotes one of the ncit P m- )possible m1ii cut. sets (In this cnse;

iiiil cut set Is any set, of nt-k+1 units), and -L Xi = 1 - 7" (I -Xi). If we let1• P,,(
t i

P[ 0 -= 1], and number the units such that po(l) _< po( 2 ) < - < po(rn), then

max IT P(O= O J = o po(i) mrin IL P(O1 =1] = I L P),
< • r < ?ipath iEPr <mk~i I • S < Pleld i .EA,

"his example o0 a k out on u, (lefeat criteria show.s how w, Call estimate (through bouitnd it,

probability that the conmmander's object.ive may be inet Alternatively, P[ o( Q ) = I J m] L,,

estimated using the sanme Monte Carlo technique used to find P[ Oj = I ] for each division j.

6. Partitioning the Space of All Possible Outcomes. At the theater level with a total of nt division-

sized and high value targets, if we examine the nuclear exchange outcome O for each division (or

equivalent high-value target), there are 2'" possible outcomes. It may be the case that it makes a

difference in the battle that follows the nuclear exchange which units are defeated or targets

destroyed in the exchangc. Or, more simply, it may be how many units are defeated and targets

destroyed across 'he theater which makes a difference.
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It is possible to define sets of outcomes of the nuclear exchange that, given our best judgment,
we expect to have a significantly different effect on any subsequent theater-level battle (if all

outcomes have approximately the same effect, then there is one set consisting of all outcomes). We

choose these sets by selecting partitions dividing the sample space (space of all possible outcomes)

into strata such that the following properties are met:

(1) All events within a given stratum will yield approximately the same overall theater-level
outcome. As a result of this assumption, we regard all events within any given stratum as

ezchangeable.

(2) Any set of n events from n different strata are expected to yield n different theater-level
outcomes. Thus, any pair of events from two different strata are not exchangeable.

In practice, all events within a stratum will not be truly exchangeable, and the two events to
either "side" of any partition will likely lead to similar theater-level outcomes. Nevertheless, it is
possible to conceive of outcome sets with different results, and we assume for all of the development
below that these two properties are obeyed.

For example, suppose that there are 20 opposing divisions In a sector of combat, Our best
Judgment, given the tactical and operational situation. is that the defeat of at. least. 7 divisions olt I[i'
the 20 will be required to avoid loss of territory (stabilize the FLOT--which may he thw

commander's objective), However, if 14 or more divisions are defeated, an opportunity ocrcurs not
merely to stabilize the FLOT but also to conduct a successful counterattack. In this case, if Oj = I
if division i is defeated, i = 1 .. _, 20, there are 220 possible outcomes, We can partition the snimple

space of possible outcomes into the E ("2 ) outconeM where 6 or fewer divisions a're dIefet'el., i,,
(k outcomes where 7 or more but less 0than 1.t divisions are deleated, and Ih, ' (1

outcomes where 1,H or more divisions are defeated,

The example given above involved two partitions (three strata)* the number of partitions

required depends on the number of significantly different theater-level outcomes that, need to be
represented. Selecting the partitions will require experienced judgment and possibly some
experimentation with the theater model. If one is unsure about how many partitions to select, the

number of strata should equal the maximum number of theater model runs you can afford,
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7. Stratified Sampling from the Sample Space. Once the sample space (space of all possible

outcomes) has been identified, it is possible to perform a stratified sampling from the sample space,

each sample from the outcome of the nuclear exchange model forming an input vector to the

theater-level conventional model. From each stratum created by our partitions, a single realization

can be sampled. A random sampling approach can be used; however, since the actual likelihood of

all of the events within a stratum may vary widely, we recommend using a fixed sampling scheme,

in particular sampling the mode from each partition. Given the assumption of exchangeability

between events within a stratum, any choice will have a roughly equivalent effect on the theater-

level outcome, so any choice is valid. Using the mode allows us to compensate for the fact that thie

events within the stratum are only approximately exchangeable. A modal (most likely) outcome will

also form a plausible input suitable for subsequent analysis. The theater-level conventional model,

such as FORCEM, will be run ns times for each of the ns strata created from ns- i partitions, using

the outcome selected from each stratum as an input. If the second assumption that we made in

selecting dhe partitions is met, the nis battles simulated in FORCEM using outcomes from the .is

different strata should yield noticeably different results. The response surface estimated using thiese

is FORCEM runs should provide a better representation of the variability possible in theater-level

combat where nuclear weapons are employed than a random selection of as outcomes from the 2 `1

outcomes possible, where ni is the number of targetable subunits in the theater.

The question naturally arises, "what if I am wrong in selecting the partitions?" Partitioning is ii

judgmental process; more of an art than a science. The situation in which this techniqule is to 1v

used is one where many runs of the deterministic model are not possible; therefore, it is not possible

to sample the results of many outp)uts given many different input data sets describing different

nuclear exchange outcomes. As a result, we simply do our best to try and force realizations from

areas of the space of all possible outcomes where we /think that the theater-level outcome will be

different. The imipact of being wroitg is not muct di ffermitt Hui bneing right. W\e still hn\'v 1 nohtir

point in the theater-level outcome space that you are sampling. The fact that the nuclear exchange

outcome did noi lead to the theater-level outcome expected should be of great interest to the

analysis. Either the theater model has deficiencies in correctly representing the impact of the

exchange, or the theater situation is (surprisingly) robust to the exchange. If the theater outcome

that you tried to create (by selecting the nuclear exchange outcome stratum) is still of interest,

another run could be attempted (if time and resources permit), sampling from a more extreme point

within the stratum.
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8. Selecting the Most Likely Outcome (Mode) From Each Stratum. Selecting the mode from each

stratum is simple and not computationally Intensive. Tile partitions defining the stratum will

establish the outcome vectors Q that fall within each stratum. Recall that po(j) = P[ Oj = 1 ], and

let qo(j) = I - po(j). Order the p0 (j) and qo(j)'s together from the largest to the smallest value, To

select the mode within each partition, go from the first value (po(j) or qo(j) ) and select the outcome

Oj = I for each po(j) and the outcome Oj = 0 for each qo(j). Continue until each target j has ail

outcome assigned, making sure to assign only one outcome to each target. It will be necessary to

"skip" over the higher probability ( po(j) or q0(j) ) for some targets j in order to have a total set of

outcomes fall within the partition.

Trhis procedure can most easily be understood through an example. Suppose we have five

divisional units with the following probabilities of defeat, ( P[ Oj = 1 ] ): po(1) = 0.2, po( 2 ) = 0.25M

p.( 3 ) = po(4) = 0.4, po( 5 ) = 0.6. We also have the following strata defined ill terms of niumber of

units defeated: { 0,11} { 2, 3, 4 }, and { 5 ). We order our probabilities m follows: q.,(1) = 0.8 >

qo(2) = 0.75 > po,(5) = qo(3) = qo(4) - 0.6 >_ p.(3) = p.(4) = qo(5) = 0.4 _. pv( 2 ) - 0.25 >

po(l) = 0.2.

The first stratum must have zero or one unit defeated. Thus our mode for the first stratum Is

lo( 1).qo(2)'po(S) 'qo(') 'q0 () (i.e., outcomes 0O=0, 0 =0. 05=I. 0,1=0. 0,=1), with i

probability equal to (0 ,8 )( 0, 75 )(0.0) -= 0,1296. The second stratum must have two, three, or 'oitlr

units defeated and the mode is qo(1)-q,(2).po(5),qo(3).po( 4 ), with a probability equal to

(0.8)(0.75)(0.6)2(0,4) = 0.0864. In this case, we "skipped" outcome 04=0 with probability 0.6 and

selected outcome 04=1 with probability 0.4 so that we would have at least 2 units defeated for this

strata, Note that an equally likely selection would be q,(1).qo(2).po(5q.,(,).po(3). The rhirid

stratum must have five units defeated an1d thle mrode is p,w(5 ),p(3),'0.(4).l),,(2),lII). wVnh I

probability equal to (0.6)(0.4)'(0,25)(0,2) = 0.00-18.

9. Interpreting the Results of Conventional Runs Using Stratified Inputs. If we wish to obtain ani

output measure from the theater-level conventional model that we wish to average across all possible

outcomes (which is the sort of thing we normally do in our simulation models), we need to construct

a weighted average from the ns runs conducted using the theater model. The weight assigned to the

output measure from each run k would be the total likelihood of all events within stratum k. k = 1.

S..... its. If it is possible to enumerate all of the possible outcomes (Wid sufficiently small), this

likelihood can be computed directly. If tit is too large, we can conduct a simple Nlo nt. C;i.r

estimation of the probability Pk. that an event chosen tit random falls within stratu ni k. k = 1.....
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na. This is the straightforward process of estimating the vector { pl,.,, P'," } from a multinomial

distribution.

We can return to the previous example to illustrate an exact computation of the likelihood of all

events within a stratum, Recall that the strata were defined in terms of number of units defeated:

{ 0, 1 }, { 2, 3, 4 }, and { 5 }. The probability that 0 units are defeated is P{ 0 } =

qQ(1),qo(2).qo(3).qQ(4),qo(5) - 0.0864. There are ( 5 possible outcomes leading to I unit

destroyed; they are:
po(1)q,qo(2),q.(3).qo,(4),qý(5), qo(l),p,,(2)-.q(3)q.o(4).qo(5), qo,(1),qo(2),p.(3),q.(4),c,,(5)),

q.(1),qo(2)q.o(3), po(4)q.q(5), q.(1)q.o(2)-.q(3)q.q(4)p.p(5)

with a total probability of 0,0216+0,0288+0.0576+0,0576+0.1296 = 0.2952. Thus the total

likelihood of the events in the first stratum is 0.0864 + 0.2952 = 0.3816.

The calculations for P{2), P{3), and P{4) are messy (more combinations) but straightforward.

The likelihoods are P{2} = 0.3612, P{3} = 0.2012, and P{4} = 0,0512, for a total likelihood of

0.6136. The likelihood of the third stratum is P{5) = 0.0048.

10. Adjustments. In practice, several cases may arise where it is desirable to make some adjustments

to the basic model. We describe some of them here.

a. Likelihood of any realization within a strata being too small. In some cases, the., totl

likelihood of any realization from a particular strata may be too small to justify further

consideration. An example of this is the third strata ( {5} ) discussed in the previous paragraph, A

probability of less than 0.01 Is likely small enough to ignore in our theater level modeling (this

threshold is, of course, a matter of judgment) In cases such as this. we may wish to simply run the

coiiventionll theater model with the modes t'rotmi the more likely (in the example. the filrst ;iii

second) strata.

b. The modes from two strata are outcomes that are adjacent to one another. It is possible that

the modes from two strata are at the boundary of their respective strate, next to the same partition,

and thus adjacent to one another in terms of an ordered outcome space, An example of this is also

provided in the previous paragraph, where the modes from the first two strata are adjacent to one

another in terms of units defeated (one unit defeated in the first stratum and two in the second), In

order to reinforce our second assumption (different results from different strata), we may wish to

make a different selection from one stratum or tihe other in order to avoid 4itifflar results. 'I'wo

possible adjustments come to mind.
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(1) The first adjustment is to select the next highest likelihood from within either stratum that

does not provide the same number of units defeated as does the mode. In our example, we would

choose either an outcome• of zero units defeated from the first stratum or three or four units defeated

from the second stratum. The most likely outcome where zero units are defeated is

qo(1).qo(2).qo(3).q.(4),q.(5) = 0.0864. The most likely outcome where three or four units are

defeated is q.(1).q 0 (2),po(5).p.(3).po(4) = 0.0576. Since 0.0864 > 0.0576, we could choose the

outcome of zero units defeated from the first stratum and keep the outcome we previously computed

(two units defeated) for the second stratum.

(2) The second possible adjustment Is to define partitions such that there are "gaps" between

the strata. In our previous example, we might define significantly different outcomes coming from

zero or one units defeated, three or four defeated, and five defeated, where the outcome of two units

defeated may be an ambiguous case leading to either the same result as { 0, 1 ) or { 3, 4 ) defeated

units. This approach may be more realistic, as the "transitional cases" at the boundaries of the

exhaustive strata may lead to theater outcomes that are not as clear cut as those nearer the center of

any particular stratum, The only drawback to this approach is the fact that the total likelihood of

drawing results from any of the strata will not equal one.

11. Repeated Exchanges. Until now, we have assumed that there is essentially only one nuclear

exchange of interest. In other words, we have asstmued that the nuclear weapons will be eniployed

during a relatively small timeframe within the overall theater battle, and that the thenater battle will

be conventional thereafter (at least for the duration of the conflict to be simulated), However, It Is

possible that a scenario may call for repeated exchanges of nuclear weapons, We can handle each

exchange by defining the outcomes through binary variables and stratifying the outtcome space as

explained above, However, constructing an experimental plan with a reasonable number of tinls of

the t heatter model f)eromnes dificuilt, nhe diiriculty rises from the totoal iumhier of' possibl,,

combinations of individual exchange outcomes, even if only it few strata are chosen for each

e.xchange. For example, only three exchanges with only three significantly different outcomes (strata)

predicted per exchange will lead to 33 - 27 different possible outcomes after all three exchanges. It

is probably too expensive to execute this many runs of a theater-level simulation model.

To handle such a situation, we begin by determining the probability of defeating each theater-

level unit and partitioning the set of all possible outcomes as explained previously, We can diagram

tlhe 27 possible outcomes for our example as shown below in Figure 1. If 27 runs are too nmany to

execute on our theater level simulatlon, then we must. select a smaller subset of the 27 ou•tontes to

actually use. The question is, of course, which subset do we pick? A stochastic sininulatihon will
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randomly select paths through the "tree" (Figure 1) by selecting individual exchange outcomes

randomly according to their likelihoods. When a stochastic simulation is run multiple times, the

paths with a high probability of occurrence will be selected multiple times and the paths with a low

probability of occurrence will be selected infrequently if at all. The result is a weighted set of

outcomes that can be used to estimate the distribution of the actual outcome after three exchanges.

In our case, we cannot even afford to run the model once for each possible outcome, much less

multiple times. However, we have the same objective of trying to determine a set of outcomes

corresponding to particular paths that can be weighted to estimate the distribution of the actual

outcome after three exchanges.

Figure 1. Possible Outcomes from Three Exchanges with Three Strata Each

Following the example dliagraommed in Figure 1, let us label tile strata at. each exchange .s Id hgit

(II), medium (NI), and low (L) corresponding to some exchange outcome along some measure (e.g.,

total units defeated). We can bound the outcome using the extreme choices at each decision point in

our tree: i.e., 111111 for an upper bound and LLL for a lower bound. We can also choose an

intermediate outcome (NIMNI) in this case by choosing the intermediate result at each decision point

(liott' thut thlere nitty not aiways be a clearly defined "midleh,"). lBeyond t'is, we n+ed sottit, sort )I'

rationale for select.ing particular outcomes out. of the 27 possible. It Is important to note thiat t111

variables are nested. For example, the middle outcome from a second strike following a high

outcome from the first exchange (IIM) will be different from the middle outcome from a second

strike following a low outcome from the first exchange (LM), because the force strengths surviving

the first exchange (and thus the subsequent theater battle before the recond exchange) are

significantly different.

Several approaches come to mind. both qualitative anild (uantitative, Qualitative aitpprouches will

choose outcomes accorthing to tlh. st.rata: for exuinillh,, alternating seqtuencets such as IINIL. l.•NIII, ,mtI

.LII could be choseil.
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Quantitative approaches will look at the probability assigned to each stratum. For purposes of

illustration, assume that the probability for the outcomes ( H, M, L ) are ( .2, .5 .3 ) respectively,

and that the probability for H, M, and L are identical for each of the three exchanges (in reality,

this would be unlikely but it suffices for illustration). We select our runs according to their

probabilities. For example, the most likely outcome will be MMM with probability (,5)3 = 0.125.

The next most likely are LMM, MLM, and MML with probability (.5)2(.3) = 0.075, etc. We can

concentrate on choosing the outcomes with the greatest likelihood (possibly in addition to the

bounds HHH and LLL).

Interpreting the output becomes more difficult when we run only a subset of all possible

outcome strata. In our standard experimental plan, we run all possible outcome strata and weight

the result with the probability associated with the strata. If we do not make any adjustments (such

as defining non-adjacent strata), the probabilities of a realization coming from a stratum will sum to

1. When we select a subset of outcome strata, the associated probabilities will not sum to 1. We

recommend normalizing the probabilities associated with the outcomes selected and proceeding

accordingly. An example should make this clear.

12, Repeated Exchanges -- an Example. Suppose we have three exchanges with three significantly

different outcomes (strata) II, M, L with probabilities .2, .5, .3 respectively as stated previously, A

possible selection scheme might be the following,

(1) Select the upper and lower bounds 111111 and LLL. The associated probabilities are 111111 =

(.2)"- 0.008 and LLL = (.3)3 = 0.027.

(2) Select the middle (qualitative) or modal (quantitative) outcome. In this case, they tire 'he

saint (NININI) with probability (.5)' = 0,125.

(3) Select the next most likely outcomes LMM, MLNI. and MNIL, The associated probabilltis

are equal at (.5)3(.3) = 0.075. Alternatively, some type of alternating strata sequence could be used.

This forms a subset of 6 outcomes out of the 27 possible. The total probability of a realization

coining from any of the 6 selected outcomes is 0.008 + 0.027 + 0.125 + (3)(0.075) - 0.85. 'T'le

normalized probabilities are therefore:

111111 = A 0.021

I , l , = 0 .0 2I )T
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MMM " 0,325

LMM, MLM, MML 0.195.

This sums to 1.001 due to rounding error.

In this example we would execute six runs of the theater-level simulation model, selecting

realizations from the strata associated with each exchange as indicated above (for example, MLM

would select from the middle stratum for the first and third exchange, and the lower stratum ill the

second), The theater-level model output associated with each realization selected call be weighted

with the normalized probability of occurrence.

Note that we only account for 38.5 percent of the possible outcomes in terms of probability. As

a result, our estimates made from only six runs will not be as good as those produced from a larger

subset from the 27 possible.

13, Averaging the Results. To continue our example, suppose that Ain outcome for some particular

measure from a theater conventional model such as FORCEM was 125 for a run using input from

the first stratum, 75 for a run from the second stratum, and 25 for a run from the third stratum. An

average value for this measure would be derived from weighting the output from a given run with

the totAl probability of tiny reallza1tion coming from wVith1In tile stratum. In out eoxttaiple, we h vi'o

(125)(.381() + (T5)(.6136) + (25)(,00,18) = 03,84, This value, along with the range of' votlcs

produced by the three different runs (summarized perhaps with a weighted variance or other

statistic), should be much more meaningful than the value obtained by running FORCEM only for

some arbitrarily chosen input set for tile nuclear exchange outcome.

flowver, a word of (natitlon is necessary. We startevd with the assumj)tioti tHt I. hen, is moro'

than one significantly different outcome in the theater routextt ill our example, theroe wert t hr',,..\

single summary measure, such as the average, does not reflect this reality. Even a sa•mlple average

and variance will not inform a decislonmaker about the possible outcomes along with their

associated probabilities. Since the total number of runs of the theater conventional model will be (by

necessity) small, we recommend reporting all of the results, accompanied perhaps with a summary

measure. In cases of tactical nuclear warfare, we are often concerned with relatively unlikely events

(such as the exchange itself) that nevertheless have a very significant impact, Averaging obscures

this fact and call lead a decisiomnaker astray.
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14. Summary. Using a deterministic, expected value approach to model a real-world situation such

as theater-level combat poses problems in selecting input data. A deterministic simulation demands

a single input data set for a model run, while the data may have to represent a process that is

inherently stochastic. An example is provided in this paper. The results of a tactical nuclear

exchange within a theater is inherently stochastic, driven by random events such as target

acquisitions. An "average" exchange outcome cannot properly be defined; an average falls to exist in

subset selection problems (for example, if 20 units out of 50 are acquired on the average, which 20

are to be selected as acquired In the deterministic model?) Even where averages can be defined, they

fail to reflect important variations In possible outcomes that may make a difference between winning

and losing the war in a theater simulation.

Ideally, a theater-level stochastic model would be used to properly reflect uncertainties inherent

in the data and processes represented by the model. However, the current state of the art iII

hardware and software only permit us (at present) to model combat at the theater in a

deterministic, low-resolution mode. Thus, we must reconcile the need to provide an input to these

deterministic models with the reality of random outcomes.

If there are approximately 104 potential nuclear targets in a theater, there are 2104 possible

outcomes that can occur in terms of the defeat or failure to defeat each potential target. Even If we

look only at the defeat or failure to defeat. the low resolution aggregate units repre,4ented In outr

theater model, we still have on the order of 21" possible outcomes, A classical experimental design

approach that requires at least one run per variable obviously cannot be applied. The challenge,

then, is to construct a plan that minimizes the number of different Input data sets yet fully reflects

the range of possible outcomes of the theater nuclear exchange.

This paper outli nes nn approach to constructitg su ch an ex perimentttal l)ha. We begin with th,

probability of defeating a potential tuclear target pd,pJII(i) and determine from that the probajbility

of defeating the aggregate units represented In our theater model (sutch as divisions). We ctim

characterize all possible outcomes of the exchange as sets of binary variables, where each binnry

variable reflects the defeat or failure to defeat each unit. We then partition the outcome space into

strata such that outcomes from different strata lead to significantly different results in the theater

battle, and all significantly different outcomes are included In some stratum, Our experimental plan

consists of a nuclear exchange realization from each strata that corresponds to the most likely

outcome within that stratum. The theater-level model is run using the experiimental plain to

determine the appropriate inpul)t tt:t dt st to ttse to reflect tihe on tc'ol1n of a theater ,iticlear exchaltg,,.
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15. Directions for Future Research. The techniques outlined in this paper form only a start at trying

to resolve the issue of how to handle uncertainty In input to large, complex expected value models.

They are presently limited to input processes that can be summarized In a reasonable number of

binary variables, where It is possible to make a judgment about the type of expected value model

output given sets of similar input realizations. Nevertheless, it is a step in the right direction. At

present, it is not infrequent to find studies based on a single model run per input scenario, without

any estimate of the variability possible In the results obtained.

Possible future research topics include extending the techniques to processes that can be

expressed in various states, the number of such states exceeding two. Better ways of estimating

partitions of the sample space may also be developed. A very realistic case in many theater scenarios

involves repeated realizations of random processes (in the context of the nuclear exchanges discussed

in the paper, this would imply many small weapon exchanges over a relatively long period of time).

At present, we have no satisfactory way of handling this situation. Robust experimental plans that

can provide meaningful results over a large number of repeated realizations will be be necessary to

model such scenarios.
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Abstract

Stress analysis of the human femur involves uncertainties in material proper-
ties, geometry, loads and boundary conditions. It is desired to propagate these
uncertainties through the Finite Element Method of stress analysis in order to
obtain the distributions of stresses and displacements in the femur. This would
provide better insight into bone behavior and the design of bone implants.

In particular, data from CT scans is currently used to estimate the Young's
modulus of bone. The CT number at any point within the cross-section is used
to estimate the apparent density at that point by means of a linear relationship.
Using experimental data published by previous researchers, Young's modulus
is related to apparent density.

Randomness in stresses and displacements can be studied by either a First
Order-Second Moment method or by simulation. This paper compares the accu-
racy of FOSM with that of simulation for a simple deterministic 2-dimensional
geometry. It is observed that second moment analysis can be adequate for
predicting accurately the first two moments of the structural response.

Randomness in loading is much easier to analyze as compared to randomness
in Young's modulus because stresses and displacements are linear functions of
the applied loads. This paper compares the relative importance of randomness
in loading to randomness in Young's modulus. Numerical experiments with
random material properties show that randomness in Young's modulus has
little influence on the randomness in stress when loading is also random.

"Graduate Student
t Associate Professor
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1 Introduction

A "standard" Finite Element Analysis assumes all input information to be determin-
istic. In particular, loads, geometry, material properties and boundary conditions are
assumed by the analyst, to be known precisely. Consequently, the results of such
an analysis are also deterministic. In reality, there is considerable variability in this
input data. This randomness affects the structural response. Frequently, designers
use a 'factor of safety' to offset their lack of knowledge of the probabilistic aspects of
the response.

Stochastic FEM models uncertain input information by means of random vari-
ables. The first two moments of the structural response can be obtained by a First
Order Second Moment method. Such a method "an provide more detailed information
regarding the response as compared to the deterministic finite element method.

Finite element analysis of the femur is ci rrently being performed assuming deter-
ministic input, in spite of experimental evidence suggesting considerable randomness
in this input data. A study of the effect of randomness in loading and material prop-
erties would help evaluate the accuracy of the deterministic solution, This paper
deals with the effect of randomness in loading and material properties on a simple
2-dimensional model of the proximal femur.

2 Probabilistic Structural Analysis

Probabilistic Structural Analysis deals with analysis of structures in the presence of
uncertainty. It can be used to calculate the first two moments or the distribution
functions of the structural response. Structural reliability theory aims at calculating
the probability of failure for structural systems. Since there are no closed-form ex-
pressions for stresses and displacements obtained by a finite element analysis, Monte
Carlo simulation (Shin 72] must be used to determine the distributions of the re-
sponse. Since realistic structural analysis problems tend to be computationally inten-
sive and that detailed probabilistic information regarding the random input data is
rarely available, the approximate technique of First Order Second Moment (FOSM)
method is sometimes more suitable for stochastic finite element analysis.

Some of the earliest work in this field dealt with eigenvalue problems involving
random media jColl 69]. Subsequently, stochastic finite element analysis has also been
applied to beams with random rigidity [Vanm 83b], turbopump blades (Nagp 87], etc.

There are several methods of modeling randomness in material properties such as
Young's modulus. Vanmarcke [Vanm 83a] suggested modeling the random Young's
modulus field as a spatially varying stochastic process. The Young's modulus for a
finite element can then be obtained by an averaging of the stochastic field over the
finite element. Liu [Liu 86] modeled the Young's modulus within an elemenL by a
linear combination of random Young's moduli at the nodes of the elemenit. Yamazaki
[Yama 88] considered the Young's moduli at centroids of finite elements as random
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variables. Der Kiureghian [Kiur 88] compared the averaging method with the centroid
method and observed that these two methods tend to bound the exact response
variability; the centroid method usually over-estimates the variability whereas the
averaging method usually under-estimates it.

3 Analysis

There is considerable variability in the input data for structural analysis problems in
biomechanics. Young's modulus in bone is currently estimated using CT (Computed
Tomt~graphy) scans. The grey value from these scans is used to estimate the apparent
density by a linear relationship. The apparent density is related to the Young's mod-
ulus by an experimentally determined non-linear relationship, There is considerable
variability in this experimental data. Therefore finite element models of the proximal
femur have Young's moduli which are not deterministic. The grey values in a CT scan
are used to determine the geometry. Distinction between bone and tissue is is based
on a threshold which is chosen subjectively by the analyst. Hence the size of the bone
being analyzed is not deterministic. Moreover the exact location and magnitudes of
loads are not known precisely.

The results of a finite element analysis are affected by all these random inputs.
Stochastic finite element analysis can be used to determine the amount of randomness
in the response. Structural reliability can be used to determine the probability of
failure. But in structural analysis of biomechanical systems, where the modeling
uncertainties and approximations are high, a reliability index or a probability of failure
could be very inaccurate. Modeling approximations include use of linear elastic finite
element analysis instead of non-linear visco-elastic finite element analysis, isotropic
material models instead of transversely isotropic material models, etc.

The pi esent study was aimed at comparing simulation and FOSM for finite ele-
ment analysis of the proximal femur. Also, the relative importance of randomness
in material properties and loading was also studied. A typical coarse 3-D finite el-
ement model for the proximal femur contains about 300 elements and 1200 nodes.
Stochastic finite element analysis of such problems is therefore too expensive. Hence
it was decided to analyze a 2D plane strain model of the proximal femur instead.
Deterministic analyses performed on both these models indicate that the results from
a 2D model are qualitatively the same as those obtained from a 3D model,

The random Young's modulus field was modeled using the Young's modulus in
each finite element as a random variable. Since the variability in Young's modulus is
very high, uncorrelated fluctuations in Young's modulus in adjacent finite elements
can give very unrealistic material property distributions. Therefore it was necessary
to assume that the Young's moduli in different elements were correlated by a spa-
tially varying correlation function. An exponentially decaying correlation function of
the form e-d/L (where L is the "correlation length") was chosen because of the "intu-
itive" feeling that Young's moduli in elements close-by should not vary independently,
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Figure 1: Variation in standard deviation of displacements

whereas Young's moduli in elements far apart could be almost uncorrelated.
Preliminary analyses showed that correlation length plays a very important role

in determining the amount of randomness in the response. Figure I and figure 2
show the variation in the standard deviation of displacements and stresses with the
correlation length for a typical plane-strain analysis. With an increase in correlation,
stresses tend to become deterministic because stresses are independent of Young's
moduli, provided the Young's moduli are changed uniformly by a constant factor.
However the displacements in this case have maximum variability. When there is
little correlation between Young's moduli, the displacements are less random but the
stresses are more random. There is a considerable change in the standard deviation
of the response from a fully correlated to a fully uncorrelated case. In order to
obtain accurate second moments of the response, one must use a correlation function.
However, the correlation function in this case must be based on experimental data.

Figure 3 shows the measured pairs of Young's modulus and apparent density
(Cart 77]. The power law relationship shown is currently being used to predict the
Young's modulus given apparent density. However this data cannot be used to de-
termiine a correlation function because these samples are uncorrelated and their po-
sitional data is not available. Another experimental study made by Goldstein et.
al. (Gold 89] gives apparent density and Young's modulus for 8 mm specimens in
the proximal and distal femur. Figure 4 compares the data presented in [Cart 77]
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Figure 4: Comparison of data in [Cart 77] and (Gold 89]

and (Gold 89]. These two sets of data do not appear to be consistent. This can be

attributed to the following :

1. The specimens in [Cart 77] came from both human as well as bovine bone.

2. [Gold 89] does not contain any data tbr cortical bone.

3. [Cart 77] contains both fresh and embalmed sp, cimens from different investiga-
tors who probably performed experiments unueir different test conditions.

It was therefore decided to use the positional data of these specimens to esti-
mate the correlation function, regression coefficients and variance by the method of
maximum likelihood.

The following relationship was assumed to exist between the Young's modulus
(E) and the apparent density (p)

ln(E) - A + B ln(p) + e (1)

which can be written as.

Y = A + BX + (2)
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where Y - In(E) and X - ln(p); A and B are unknown regression coefficients and
d - N(O, o40) is a normally distributed random error. This is consistent with the linear
regression on a log-log scale performed in [Cart 77]. 332 specimens were obtained from
the left and right proximal and distal femurs of two cadavers ((Gold 89]).

Therefore we have

yi=A+B i+ei ,= i1to 332 (3)

The following correlation function was chosen for the random errors e,'s

COV[ej, eý] =6[ej] = e-d/LL, 2  (4)

where d is the Euclidean distance between the centers of specimens i and j.
The above correlation function is used with the following restrictions:

*There is no correlation between the errors e, from the proximal femur to the
distal femur.

* There is no correlation between the errors ej from the left leg to the right leg.

* There is no correlation between the errors ej from one person to another,

The problem can now be stated in matrix form as follows

Y= X + C(5)

where (Y1 (1
y= 2 X= X,2 3= (6)x

Y tt l JiX nX2 nxI

S332 (7)

and

6[y] = C[XO] + C[e] -x (8)

6[( - XO)(Y - XR)'] = e[,c'] a 2 (9)

where V - f(L) and L is the "correlation length". Maximum likelihood estimates
for the parameters A, B, a and L were calculated [Chin 89].
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4 Results

The maximum likelihood estimates obtained are given below:

L = 16.32 mm

A = 6.82
= 1.4676 (10)

= 0.313

The relationship between E and p (shown in Figure 4) can now be written as

E = 916p1. 4eT6 ed (11)

where e N(O, 62).
Figure 5 shows the distribution of Young's modulus in the proximal femur with

an implant. Titanium was chosen as the implant material and its Young's modulus
(= 110 Mpa) is deterministic.

This problem was solved using both FOSM and simulation. For any function f(,t)
(such as displacement or stress) of the random variables g. (here, Young'u moduli),
a Taylor series expansion can be performed about the mean values of the random
variables:

f(W)=A() + L (I (- it) (12)

This yields

E[f(a)] = f(z.) (13)

Var[f( l.) I = ( c"(a) (14)

where C.. is the covariance matrix of the input variables and iL is Lhe awei vector.
The mean response is thus the usual deterministic response. This analysis ignores the
distribution function of g. and the non-linearity of ff(Z.). It is however computationally
much faster than simulation. Simulation and FOSM results on plane-strain analyses
6f the proximal femur indicate that FOSM is sufficiently accurate in predicting the
first two moments of the response. The error in mean and standard deviations of
stresses was usually well under 5 percent. Figure 6 compares graphically the stan-
dard deviations of the strem, in the inferior-superior direction obtained by these two
methods. Moreover, the marginal distribution of stress at any point was very close
to a Gaussian distribution. This suggests that in spite of the approximations made
in FOSM analysis, FOSM can be used as a reliable alternative to simulation.

The coefficient of variation can be defined as :
standard deviation

coefficient of variation = (15)
mean
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The coefficient of variation of stress as a result of randomness in Young's modulus
was about a third of that of Young's modulus. This suggests that stresses are not as
random as the Young's moduli.

Randomness in loading is easier to analyze because stresses and displacements are
linear functions of the magnitudes of the applied loads. Thus FOSM analysis can
accurately calculate the first two moments of the response. Moreover, the coefficient
of variation of stresses (or displacements) is the same as the coefficient of variation of
the applied loads, provided the applied loads are fully correlated. Since the applied
load is not correlated to the Young's modulus, the resulting randomness in stress
is dominated by the randomness in loading. Moreover if the loads are Gaussian,
the resulting stresses and displacements will also be Gaussian and FOSM will again
produce accurate results.

5 Conclusion

This pap.s-r studies the effect of uncertainties in material properties and loading on
stresses and displacements in the proximal femur. Simulation studies showed that the
approximate method of First Order Second Moment analysis can predict accurately
the first two moments of the response. The resulting marginal distribution of stress
was very close to being Gaussian. When the applied loads are deterministic and
the Young's moduli are random, the coefficient of variation of stresses was found to
be much less than that of Young's modulus. Since stresses are linear functions of
the applied loads the coefficient of variation of stresses is equal to the coefficient of
variation of the applied loads when the Young's moduli are deterministic, When both
Young's moduli and applied loads are random, the randomness in loads dominates
randomness in Young's modulus. Hence the resulting response can be predicted
accurately by modeling randomness in loading alone.
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Abstract

This paper summarizes the results presented at the Army Research Workshop held
at Monterey, CA In October, 1989. A more detailed version will appear elsewhere.

In the agedependent minimal repair model of Block, Borges, and Savits (1985),
a system falling at age t undergoes one of two types of repair. With probability
p(t), a perfect repair Is performed, and the system is returned to the 'good-u.new'
state, while with probability 1 - p(t), a minimal repair Is performed, and the sys.
tem is repaired, but Is only u good as a working system of age t. Whitaker and
Samaniego (1989) propose an estimator for the system life distribution F when data
are collected under this model.

Using the product Integral representation of the survival function, a buic result
of Block, Borges, and Savits concerning the waiting time until the first perfect repair
Is extended to allow for discontinuous distributions. Then using counting process
tecbniques, the large sample theorems of Whitaker and Samanliego are extended to
the whole line. These results are used to derive confidence bands for F, and to
determine a sufficient condition for their applicability on the whole line. Simulation
results for the bands are provided. An extension of the Wllcoxon two-sample test to
the minimal repair model is also examined.

1 The Minimal Repair Model

To fix notation, let F be a life distribution, let rF be the upper endpoint of the support of F
(possibly infinite), and let A(t) = f(0,,f(P(a-))'sdF(e) be the cumulative hazard function
of F, where P F 1 - F.

Now, for j = ,...,n, let {Xj,o i O, Xj,,,Xj,2,...} be independent record value
processes from F. These are Markov processes with P(Xj,k > t I Xjo,... ,Xj,k-.) =
P(t)/P(Xj,kj), for t > Xj,hk-., k ? 1. If AF(r,) > 0, define Xjj = oo for all I larger than
the first k for which X,k = rr.. In all cases we take p(r") = 1. These processes represent
the failure ages of n systems under a "forever minimal repair" scheme.
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"Perfect repair is introduced into this model by the use of independent uniform random
variables. This facilitates the construction of the a-field structure (filtrations) necessary
to our analysis of the model through martingale methods. Thus we let { Ui,, : 1 _ i <
n, k _ 1), be i.i. uniform r.v.'s, and define

6,,k = (uj~k <5 P(xj~k)),

Svi = inf{k:,, =k 1 }.

Thus observing { (Xjn,,.., ,; - i, .. )l, n}, is equivalent to observing n indepen-
dent copies of the age-dependent minmal repair process of Block, Borges, and Savits
(BBS)(1985), each until the time of its first perfect repair.

This structure provides us with a concrete starting point for a statistical analysis of the
BBS model. However, we need conditions which are sufficient to assure the finiteness of
Xj,,,. Such conditions are given by the following result, which generalizes a result of BBS to
the case of possibly discontinuous F. Though this generalization may not be important for
modeling system failure., it will be useful to us in proving large sample results. Also, the
proof of this result, which we sketch below, is more straightforward than the original proof
of BBS. The reader is referred to Hollander, Proschan, and Setburaxnan (1989) (HPS), for
detailed proofs of this and other results in this paper.

Proposition 1 Let H(t) = P(X,. : t, v < oc). Then

RA(t) - 11(o,,l(1 - dAa)

- ' f dF'(j)) p( AF(.)X- (o,, As), T~zq csq
Moreover, if either

(i) AF(rF) > 0 (and p(rF) - 1),

or

(ii) F(r,'-) = 1 and f F p(s)f - +oo,

then H is a proper distribution function and a' is almost surely finite. Conversely, if H is
4 proper distribution function, then either (i) or (ii) must hold.

Proof. (Sketch) Note that

AI(t) - P(X<t,t < oo)
= 1- EP(X• •t,v=i).

jio

A conditioning argument shows that

== + ,. - t ý ... )0

105



where a(Q(t) W f(o,"(1 P(S)) '1A()

This is equivalent to

p(t) 1(0,(1 + da) - exp (al(t)) fl(I + Aa(a)),

where all is the continuous part of a and A(t) is the jump in a at t. Here, l1(o.,](( + da)
represents a product integral. The theory of product integration with applications in
statistics is reviewed in Gill and Johansen (1987). The result follows from the last, equation
after some algebra. 0

We will say that a pair satisfying either (I) or (ii) describes a regular repair scheme.

2 The Whitaker-Samaniego Estimator

In this section, we derive a martingale representation for the Vhi taker-Samaniego (1989)
estimator (WSE). This representation is then used in conjunction with Rebolledo's Mar.
tingale Central Limit Theorem and the techniques of Gill (1983) to derive limit theorems
for the WSE.

The Basic Martingale

Define
N.'(t) #k:.xj,h < t ),

and

a (, -

V 0(Q Uj,h :k a 1,1 5jS n).

For the rest of this paper, (i)t,1o will serve as the underlying filtration for all martingales.
Now let Nv(t) = (j(/ k) : XA :,5 t< k < J, ,1 <5 n )o

Y(t) = (/:x411, >: t, 1 _< n_ ,)
and M(t) - N(t)- 1Io,,l Y(o) dA(o).

In HPS, it is shown that M is a locally square.integrable martingale with predictable

quadratic variation given by

(M)(t) = •o,,] Y(9)(1 - AA(,)) dA(o). (1)

This provides the basic mnartingale structure for further analysis of the minimal repair

model.
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A Martingale Representation for the WSE

Assume that F is continuous and that the pair (Fp) describes a regular repair scheme.
Let X(h) be the kth ordered value of the set { Xj,h : k _< vj, 1 _5 j _5 n ), let

T inmn{ X(k) : Y(X(,)) 1,

and let J(a) a• I(, T). Then the Whitaker.Samaniego estimator (WSE) can be written

Tl• • noej(1- d,)- •I (I- AA

where

f J(8 dNi(s).
Using Duhammel's equation (Gill and Johansen, 1989), (P - F)/IP can be expressed

as an integral with respect to the martingale M:

'Pt)F( odM(a).

From this and (1) it follows (P - F)/, is Itself a locally square-integrable martingale with
predictable quadratic variation process given by

This quadratic variation process essentially serves to identify the covarlance structure of
the limiting Gaussian processes derived in the next section.

Large Sample Results
With the above representation, Rebolledo's martingale CLT and the methods of Gill(1983)

yield the following result, which extends Theorem 3.3 of Whitaker and Samaniego (1989)
to the whole line.

Theorem I Let (Fp) deacribe a regular repair scheme, witth F continuous. Then the
following hold:

(I) A, n -e cc,
v/(P - F) 4 P .B(C) in D[O, oo],

where B is Brownian motion on [O,oo), and

C(t) = I dF(s)
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(iH) As n -o oo,

V4 7(P -F) -V EO(K) in D[O,oo),
where B° is Bro, nian bridge on [0, 1], and K - C/(1 + C),

Details of the proof of this theorem are given in HPS. We note here that the proof of
(I) does not require any additional conditions beyond regularity of the repair scheme. This
is in contrast with the analogous result of Gill (1983) for the Kap'Atn-Meier estimator in
the usual censored survival data model, where some condition on the amount of censoring
is needed. We will see below however, that an additional condition limiting ¶;he amount of
imperfect repair is needed to assure convergence of the expression in (11) when an estimate
is substituted for I/F.

3 Applications
In this section, the asymptotic results of the last section are used to derive large sample
confidence bands for F and to obtain the limiting distribution of an extension of the
Mann.Wbitney.Wilcoxon test statistic to the minimal repair model.

Confidence Bands
The result in part (ii) of Theorem 1 suggests confidence bands based on the distribution
of the supremum of Brownian bridge. It is necessary however to estimate R/F In order
to construct the bands. Let F be the empirical cdf of the Xj,,,, and let R - •/(1 + •),
where C is defined by

dp(s

We would like to have

VW ((P - F) -Z B0 (K) in Dr0,o],asn-.oo, (2)

in order to justify asymptotic (1 - a) x 100% confidence bands for F of the form

where A. is the upper ath quantile of the distribution of sup IBe(t)I.
We can show that (2) holds on [0, r] for any r < rip, but for the complete result, some

additional condition seems to be needed. Using the result of Prop.1, it is shown in HPS
that R/F and 1?/P atf nondecreasing and that

1 R._<.• and 1 S -< _
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Using this, it can be shown that a sufficient condition for (2) is that

f (I - p(s))dA(a) < o.

This condition requires that p(t) 1 as t 1 rp (at a rate sufficient for the convergence of
the integral), and hence provides a limit on the amount of imperfect repair.

Simulation results for the bands computed over finite intervals (in the case of constant
p) indicate that coverage probabilities are quite good for sample sizes of 50 or more. This
will of course vary with the parameters of the model. Simulations were carried out with
both Gamma and Weibull F, with varying shape parameters, and with various values
of p, various interval lengths, and various nominal confidence levels. As an example, the
following table gives the simulated coverage probabilities for nominal 95% confidence bands
over the interval [0, 4.7441 when the underlying F is Gamma with shape parameter 2. (Note
that 4.774 is the ninety-fifth percentile of Gamma(2).) More extensive tables are provided
in HPS.

n Ero,30 E =.25. p =,10

10 .9025 .8660 .8710
20 .9270 .9125 .9187
30 .9460 .9287 .9327
50 .9515 .9398 .9395
100 .9528 .9540 .9452
200 .9515 .9517 .9495

An Extension of the Mann-Whltney-Wilcoxon Test

Using part (i) of Theorem 1, it is also possible to obtain the limiting distribution for
an adaptation of the Mann-Whitney.Wilcoxon two-sample statistic to the minimal repair
model. Here we assume that for i - 1, 2, we observe n, BBS processes from (Pi,pi), each
until its first perfect repair. In general we wish to test the null hypothesis H0 : F, = F2,
with typical one-sided alternatives specifying fFj dF2 > 1/2, and two-sided alternatives
specifying fF1 dF2 0 1/2.

A statistic analogous to the Mann-Whitney form of the Wilcoxon two-sample test
statistic is W, as given by

W mAd02

AN3 (0)). Y2 (a)

where P, is the WSE, ANi(s) is the number of failures at age a, and 1'.)is the num-
ber of items at ri3k at age s in the ith sample. This statistic is a natural estimator
of fF1 dF2 = P(X1 :5 X2 ), where X, and X2 are independent random variables, with
Xi - .F. Assuming continuous distributions, P(XI < X2 ) w 1/2 under Ho, and in the
one-sided case, significantly large values of 'IV provide evidence against Ho in the direction
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of fF1 dF, > 1/2. For large sample'sizes, we have the following result, which is proven in
HPS:
Theorem 2 1f F1 and F2 are continuous, and the pair. (Fz,pt) and (F2,p2) deacribe reg.
ular repair schemes, and if ni,n2 -- oo in such a way tMt - .. A, 0 < A < 1,
then w d+ R(

where

a.- 2j//'IA ( .)P,(t)C0(O)dF2(.)dF,(t),

e - 21/"P F(a)Fs(t)C,(t)dF,(.)dF,(t).

Under the null hypothesis, Ho : FS n F w F2,

all. 2soP(,)C )(j P(.)dF(s)) dFQ) w 1J.* ! dF(s)

For purposes of testing the null hypothesis in the large sample case, we thus propose
referring the test statistic

•~2 / (•--)/( + !n!
to a standard normal distribution, where

if" 11 (2 d•',€) -. s,
4 o P.q(8148) A•,€s)>o Y

and Hi is the empirical distributioza of the perfect repahr ages in the ii" sample.
It is shown in HPS that the aj are consistent, which justifies the use of this test. If

the pi are constants (see Brown-Proschan (1983)), the above expressions simplify greatly
under HO. If F, - F2 w F, then ,t- Aft', and the asymptotic variance in (3) reduce$ to

12+ 1 2 __

_A(4Pi2 A IA 4(4-..p2)

The pile are of course consistently estimated by their MLE's, A, the ratio of nj to the total
number of failures in the isb sample, and for large sample@, the statistic Z', given by

"" (W - 1)/ [,,-,) 1+ 1 ]'"2
can be referred to a standard normal distribution in order to test the null hypothesis. Note
also that if p, = p2 - 1, then we are in the usual l.i.d, two-sample model, the WSE's
reduce to the empirical c.d.'., and W is just a multiple of the Mann-Whitney form of the
Wilcoxon rank.sum statistic. In this case, the above results yield

- / 0(o,1),

in agreement with the usual results for the Mann-Whitney-Wilcoxon test.
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THE APPLICATION OF A COMPOSITE DESIGN TO

TEST A COMBAT SIMULATION MODEL

Carl B. Bates

US Army Concepts Analysis Agency

Bethesda, Maryland 20814-2797

ABSTRACT. A study is to be performed that involves the determination of a

mix of target acquisition systems that yields an improved capability at a

lesser cost. A primary candidate for the combat simulation is a two-sided

deterministic division-level ground combat model. Before the model could be

used in the study, the model had to be tested to determine its capability to

evaluate the combat effectiveness of mixes of target acquisition systems.

The test involved four factors, one qualitative and three quantitative

factors. Time constraints limited the number of simulations to 30 runs. A

composite design is presented, its application is illustrated, and its

efficiency is discussed.

1. INTRODUCTION. The test was to assess the sensitivity of model

output to specified changes in input values for the four selected input

factors. The four factors are:

TYP - Type of sensor,

FRC - The fraction of target elements for which the sensor has both

coverage and line-of-sight,

TIM - The time, in minutes, that a sensor spends processing and

reporting a target it has detected,

NUM - The total number of sensors employed in a model run.
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Two types (A and B) of sensors were to be evaluated. Three values were

ultimately selected for each of the three quantitative factors. The minimum

and maximum from operational performance were taken as the lower and upper

values. A "middle" value was then added. The values are:

FRC - 0.1, 0.5, 0.9,

TIM - 0, 5, 10.

NUM - 5, 15, 25.

This gave a 2x3x3x3 full design. Time constraints, however, would permit

only 30 runs for the complete test.

2. EXPERIMENTAL DESIGN. Therefore, the objective is to develop an

experimental design with not more than 30 design points. The design should

permit assessment of a full second-order model in the three quantitative

factors. Draper and John (1988) discuss response surface designs for

quantitative and qualitative variables. They give some first and second-

order designs for 2k factorials and 2k-p fractional factorials. The decision

was made, however, that a single model involving TYP had no advantage over

two models, one for each of the two types of sensors. Now the problem is to

develop a response surface design (one of each sensor type) for the three

three-level quantitative factors.

Let the three variables X1, X2, and X3 represent the three quantitative

factors. The second-order model we wish to investigate is:

02X2 + P+I X3+ P1X'1+ P22X2+03X 3 4 + ,XX2+ 013 X1 X3 + 023XX,+e
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The 27 design points of the full 3x3x3 design are shown in Figure 1. The

;aw, middle, and high values of the three variables are denoted by "0", "1",

and "2", respectively. The eight corner points, (000), (200), (020), (220),

(002), (202), (022), and (222), would be a full 23 design if there were no

middle values. If these eight points are augnmented with the center point

(111) and the six center points of each plane, (211), (011), (101), (121),

(110), and (112), we have a design similar to a central composite de!;tgn.

The design is given in Table 1 and illustrated in Figure 2. Box and Wilson

(1951) introduced the concepts of composite designs. Myers (1971) and Box

and Draper (1987) discuss second-order composite designs. Myers, Khuri, and

Carter (1989) discuss recent and current response surface methodology

research.
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Table 1. Three-variable Composite Design

RunE X1 X2 X3

1 0 0 0

2 2 0 0

3 0 2 0

4 2 2 0
5 0 2 CornersS0 0 2

6 2 0 2

7 0 2 2

8 2 2 2

9 2 1 1

10 0 1 1

11 1 0S.... . i 'Star
12 1 2 1

13 1 1 0

14 1 1 2

1 1 1 Center

A three-variable central composite design is given in Table 2. The

literature on central composite designs discusses determining the value of a

to yield orthogonal designs. The value of a is the length of the axial

points shown In Figure 3.
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Figure 2. Composite Design
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Table 2. Three-variable Central Composite Design

Run # X1 X2 X3

S2 -1 -1' 1 !

3 -11-1

4 1 1 1 23 factoral5 1, -1 -1 i

7 1 1 -N

9 -Q0 0

10 0 0

11Q 0 Axial
12 0 +00

13 0 0 .a

14 0 0

15 0 -a 0 Center

3. DESIGN F~FICINC. Myers (1971) discusses the efficiency of central

composite designs (ccd) and shows that a three variable orthogonal ccd is as

efficient as a 33 factorial design for estimating the mixed quadratic

coefficients. The results, however, apply to only orthogonal ccd and do not

apply to the restrained composite design in Table 1.

Because no information could be found on the efficiency of the

restrained composite design, a cursory evaluation was made of the design.

ACED, Algorithms for the Construction of Experimental Designs, developed by

Welch (1985) was used for the evaluation. Welch (1984) generalizes

Mitchell's DETMAX algorithm and discusses ACED. ACED has four optimality

criteria, 0 Optimality (DO), Average Variance of the Response Estimates (AV),
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- -- .... o Axial

Figure 3. Central Composite Design

Maximum Variance of the Response Estimators (MV), and Average Mean Squared

Error of the Response Estimators (AM), AM was selected as the evaluation

criterion because it provided a robust balance between variance and bias.

The AM criterion is discussed in Welch (1983).

The variances of the parameters estimates (bs) of the second-order model

are:

V(bo) - 12.0

V(bj) - 28.6

V(bil) - 5.8

V(bij) - 1.9
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The variance efficiency is 99.6% and the bias efficiency is 91.6%.

Since these efficiencies were considered acceptable and time constraints

precluded further evaluation or design development, the composite design in

Table 1 was employed.

4. APELICATION. The model was exercised for each sensor type for each

of the 15 design points in Table 1. Several output variables were extracted

and analyzed. Testing was performed at the 0.05-level of significance. One

data set, Red personnel losses, is shown in Table 3. The significant model

was considered to be:

Y=941.2+1771,1X 1 +483,5X -9,5x 2- 196.3X X3

The unadjusted R2 was 0.90. The residuals (yt-Yt) ranged from -743 to 568.

The observed and the predicted values are shown in Figure 4. The confidence

intervals on Y ranged from ±481 to ±701.
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Table 3. Red Personnel Losses with Sensor A

Run # Xl X2 X3 y

1 0.1 0 5 1471

2 0.9 0 5 2333

3 0.1 10 5 919

4 0.9 10 5 1615

5 0.1 0 25 4313

6 0.9 0 25 2596

7 0.1 10 25 5159

8 0.9 10 25 2153

9 0.9 5 15 2670

10 0.1 5 15 4201

11 0.5 0 15 4038

12 0.5 10 15 2835

13 0.5 5 5 1823

14 0.5 5 25 3858

15 0.5 5 15 4146

The analysis results of this output variable Is shown only to illustrate

application of the composite design, not to Illustrate goodness of the final

fit.
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5. SUMMARY. The 12-point Box-Behnken design which is the complement of

the 15-point composite design used was not considered. It may have provided

a more efficient design. Also not considered was shortening the six axial

points to give five levels for each of the variables. This may, too, have

been a superior design to the design employed. The 15-point composite design

employed was considered to be appropriate for the purpose of evaluating a

second-order model.
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Distribution Theory for Variance Components
Estimation Diagnostics

Dr. Jock 0. Grynovicki
U.S. Army Laboratory Command
Human Engineering Laboratory

Aberdeen Proving Ground, Maryland

Dr. John W, Green
Department of Mathematics

University of Delaware
Newark, Delaware

Abstract

Distribution theory is developed for diagnostics used to investigate

variance uomponent estimates and model assumptions in mixed or random

models. Estimation of variance components In a given model is the

equivalent of estimation of certain linear functions thereof. Each

such linear function is realized as an average of natural sample

covariances, that may be independent or correlated. The distribution

of the set of these sample covariances Is developed in both cases,

thereby giving a formal basis for a diagnostic procedure that has been

used to identify sources of negative variance component estimates and

to reveal model deficiencies. This mixed or random analog of residual

analysis, complete with diagnostic tools, is presented. This Involves,

in part, a re-examination of the model for mixed or random effects,

The distribution applies to any random or mixed model and is

illustrated here in actual repeated measures experiments and validated

by simulations.
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1.1 A ntroduction

The problem of estimating variance components is the equivalent of

the problem of estimating the covariance, Ot, between appropriately

related observations. As alluded to In Hocking (1989), the estimate

is an average of sample covarlances, Individually referred to herein

as diagnostics, or is a simple linear function of such averagese

Therefore, the development of the distribution theory for the varlence

component diagnostics will focus on the development of the distribution

of the sample covariances. It will be useful to consider these

as bilinear forms. For example, consider a three-factor factorial

experiment with factor I random and factors 2 and 3 fixed. To estimate

61 01, a sample covariance of the form

C l/(a,.l) x ý(T(jk. .- .TJk.)(?IJ'k*. - ?..i*.)

is used, inwhlich JOJ* and kCk*, This sample covarlance can be written

written as a billnear form

1/(n)(Z1'AZ,), with Z,' - (¶'ijk.)1 , Z' (

A a 16 J '/a 1 and n - a, - 1.

Equivalently, the bilinear form can be written

128 

M



12n [,,',,.,' E[ZZEII ] ''
,2,

Except for rearranging Indices, the bilinear form associated with any

diagnostic can be written as (1. 1). For simplicity, the examples

discussed assume a three-factor model, but the methodology is general.

If a nonfactorlal model Is assumed, still with only one

random factor and It is not nested, then a sample covarlance of the

form C Is still appropriate. However, depending on the nesting, one

of the conditions j 0 J', k 0 k' might be relaxed. In the case

of four or more factors, the same results hold, so long as there is

only one random factor (other than replication) and It is not nested.

The distribution of Z'IAZs depends on the covariance

structure of (Z,',Z.'). There are two cases to consider. If there Is

only one random factor, such as factor 1, then

(Zl',Z1 ') ,- N (p, V), lnwhich u' - (,u,, p,'), and

. (al ci)

with each of a and o being a simple linear function of the varianci

components.

If factor I is not the only random factor, V may be more

complex and the diagnostics are non-independent paired observations.

This case will be discussed In section two.
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1.2 Background

The first explicit density function for the bilinear form,

C.

with n - (a&-l) was developed by Pearson, Jeffery, and Elderton in 1929

based on Independent sample pairs (?Iljk.,ij*k*.) having a

bivarlate normal distribution with the varlance-covariance structure

of V below. In summary, they used the result that if ?Ijk. and

?j k*, are jointly normally distributed random variables, with

expected values u, and A2, respectively, and covariance

V [: a Y
(c a

then the conditional distribution of Tijk., given ji*jk., is normal with

expected value (pO+p) (M * kJ.- 2) and standard deviation a(

Thus, the conditional distribution of C, given the a, vector (7'ij *k )

is normal with expected value (p)S and standard deviation (a(l-A)S)1 1 ,

where 1-
,,-= (¶'Ij'k*, -?.jk,),

As S is distributed (a)X 2 ., the probability density function of C is

f(c) (n)/ exp(-S/(2a))

exp [ (nc-( 1 2S)/a)' ]dS. (1.2)
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Various other methods of deriving the distribution have been

demonstrated by Wishart and Bartlett (1932), Hirschfeld (1937), and

Mahalanobis, Bose, and Roy (1937).

Press (1967) presented some other equivalent forms of' the

density (1.3). Defining a sample of N independent observations

(Z11, Z12),..., (ZNI, ZN2) from N2(p, V), he found that for n - N-I,

f(c) - n r 0 - rS) n/(nc)(n '1)/3e " () (1.3)
" rl/s(2* (n. l)/Sr(n/2) (-)(nc)

inwhich Ka(z) denotes a modified Bessel function, P , ,

where "y and q are functions of p and the common variance (a) of

the Z's, and are equal to "I - (a(l-p1)]',ii -

r = p, and p a c/a inwhich c is the covariance of the Z's and a

the variance. When a is an integer, the Bessel function is referred

to as a modified Bessel function, and when a is an odd half-integer, it

is referred to as a modified spherical Bessel function of fractional order

or a Bessel function of the third kind. When the number of degrees of

freedom n is even, it is possible to express the density of C in terms

of elementary functions and to calculate the exact expression since

(n-.)/2 11(n-5)/2 + j)

Kr(j+l) ( 2(n-5)/e-j' (2z)J

Press (1967) provided formulae for computing the exact

cumvlative distribution function of the sample covariance for an even
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number of degrees of freedom. In addition, percentage points of the

C distribution for seven values of n and p - 0 were tabulated.

However, for an arbitrary sample size, Pres3 states that the

probability density function of C "is a complicated expression which

is difficult to evaluate." To evaluate the probability density

function, it was necessary to develop an efficient formula for

calculating the distribution function of the covariance utilizing the

recursive properties of the Bessel function.

1.3 Distribution of the Sample Covariance for all Sample Sizes

In developing the computational formula of the distribution,

two cases had to be considered, For the first case, N is even, and

(N-2)/2 is an integer. The second case is that N is odd, Thus, the

calculation of the probability density function requires calculation

of the modified Bessel function for both integer and fractional order.

The computation of the modified Bessel function of integer

order requires two polynomial approximations for order 0 and 1, which

will be referred to in this paper as ko(y) and k,(y), respectively, These

approximations are precise to at least 1xl0 4", The approximations are

defined in Abramowitz and Stegun (1964). From ko(y) and k1(y) and

results in Abramowitz and Stegun (1964), the fc.Ilowing recursive

formul., may be developed:
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k(+,,)(y) - (2n/y) k ÷(y) + (,.1)(Y)' (1.4)

For example, k2(y) - (2/y) k1(y) + ko(y),

(4) k2(y)
and k5(y) , + kj(y).

The above formula (1.4) is useful in calculating the

values of the (n-l)/2 order Bessel function. To determine the value

of the Bessel function for fractional order the following relationship

found in Abramowitz and Stegun (1964) wua used.

Y k-o •k1(m-k- l)1(2yi)k

Given the values of the Bessel function for a fixed n, the probability

density function of the distribution (1,3) was easily evaluated.

1,4 Calculation of CDF

The cumulative distribution function was computed using

Simpson's integration method. Simpson's method of numerical

integration approximates the probability density function by

a set of parabolas. In general, Simpson's rule gives

fPf(x) dx f- fc+fn + 4 fj +2 fj J
where Ax - (b-a)/n, fj - f(a+j&x).
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1.5 Tabulated Cumulative Distribution for the Diapnostics

Critical percentile points of the covariance distribution for

p ranging between -0,9 to 0.9 in increments of 0.1, with the sample

size N between 2 to 10, 15, 20, 25, 30, 40 and 50, and the variances

equal to one are contained in Grynovicki (1989). Specifically, this

paper gives the value of Cai, such that P[C s Cult] - a, for a - 0.01,

0.05, 0.10, 0.90, 0.95, and 0,99 inwhich C is the sample covariance

from a bivariate normal with mean 0 and indicated variance-covariance

matrix V,

1.6 CDF Program for Diagnostics

A computer program to calculate the cumulative distribution of

the sample covariance (C/(N-1)) or equivalently the variance component

diagnostics is presented in Grynovicki (1989). The program is written

in Turbo-Pascal Version 4.0wO, see Miller (1987), and can be compiled

and run on any IBM-compatible or Macintosh personal computer provided

Turbo-Pascal 4.0 is available. The program utilizes Simpson's

lntearation method and calculates the cdf using a tolerance of 10'e.
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1.7 yalidation of Distribution

For p - -0.9 to 0.9, in increments of 0.1 and for sample size

N o 2 to 10, and 50, a random sample of 1,000 sample covarlances from

a blvariate normal were generated as follow. First, three sets of

1,000 independent standard normal variates (Y1, Y2, Yd) were

generated using the Box-Muller transform. Second, t,OOOxN independent

samples from a bivariate normal distribution were generated with

specified variances and a covariance using the transformation

Z* - c01 (sin (A,) Yj + cos (A.) Y2 ) and

Z2 - 02 (sin (AS) Y3 + coo (A3) Y2 )

in which

A1 a arccos[(Iois/(oros))I/2], and

A3 o A, I f 02 2! O,

or" - A, IfCif r1 ,O.

Finally, the 1,000 covariances were calculated by sequentially

selecting 1,000 pairs (Z*1 , Z*,) of N-vectors and calculating the

covariance Z*1'AZ*2, where A - I-JJ'/N, I is NxN identity matrix,

and J Is a N column vector of r's.

As a partial check of the density function, a comparison of

the simulation and actual distribution was made using the Kolmogorov-

Smirnov one-sample goodness-of-fit test. The test statistic is

D o maximum IF(x) - S(x) I, -oo -c x < o0,

135



inwhich F and S are the theoretical and simulated distribution

functions, respectively. For a sample size of 1,000, the critical

value of this statistic is 0.043 at a n 0.05.

Comparison of the theoretical and simulated values was made

for values of N from 2 to 10 and 50 for values of p in increments of

0.1, between -0.9 and 0.9, and for variances equal to one. Two SAS

computer program were written to generate the simulated value and to

calculate the Kolmogorov-Smirnov maximum deviation statistic. These

programs are contained in Grynovickl (1989).

The calculated D for the specified parameters can be found in

Orynovicki (1989). All 190 simulations were determined to have a

calculate D below 0.043, Thus, the simulated distribution is

consistent with the one derived when compared at the 0.05 probability

level.

It is worth noting that the maximum deviations occurred at the

center of the distribution and not at the tails.

1.8 Validation of Distribution for Diagnostic Tables

1.8.1 Introduction

Once the distribution for independent diagnostics was

developed and validated, the next step was to determine if the

distribution could be used in evaluating a table of diagnostics that

are correlated. Searle (1971b) has shown that the correlation of two

bilinear forms is equal to
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Cov(Z'IAaZ4, Z'3 A34Z4) - tr(AUCSSA3 4C41 + AnCS4A84C31),

in which E(Z,) = E(Zs) - E(Zs) - E(Z4) - 0,

where CUr a Cov(Zu, Z,), if u 0 v and

a Var(Zu, Z,), if u a v,

Also define Z' w (Z1', Z4', Za', Z4'], so that Z- N(0,V),Inwhich

V , C21 C32  C03 C24

C81 C32 CS, C34 I
C41  C43 C43 C44

To determine how well the derived distribution fits correlated

diagnostics, an experiment will be simulated at leot 200 times and the

calculated diagnostics will be compared with the theoretical

distribution. For simplicity, I will consider a 3-way factorial

experiment with factor I random and factors 2 and 3 fixed. In this

simulation, 01, the covarlances of the form

C1 - l/(a1 -i) (?ijlkl .-?'.j lkl .)(?'1ij 2k ,-?,j 2k2 .) - I/(a1-1) Z1'A1 2Z2,

in which J, 0 J, and k, 0 k% will be the diagnostics used, Also define

C, - 3/(a-l)•(?ijsks.- .Jaks.)(?j'J4 k4.-¶.j 4k.) -k /(a l-I) Z,'As4 Z4,

For this experiment if we let
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card J - 0, 4) n r(,. J4)h

cad k - (k, 1 k,) n (l, k4hand

cad jk . ((J1. k1), (4, %3)) n ((4, ka), (J4, k4)),

then the covarlance of anty two of the diagnostics for 01 Is

coy (CrCa) = 2612 if card J a card k n 0,

013 +0112 if card j- l, card kaO,

012 + 0101 If card j -0, card k- 1,

01s + 01 uIs if card j w card k - card jk - I,

01012 + $1913 if card J,,card k • i, card jk,,O,

01 es+ if card J m 1, card k w 2, card jk - I,

01S + OU612& if card J - 2, card k - card jk = I.

Also, the var (C1) - 01 + e12.

Other experimental designs are entirely analogous, If a

nonfactorial model is assumed with only one non-nested random

factor, a sample covariance of the form C is still appropriate

although, depending on the nesting, one of the conditions, J, 0 J29

kI 0 k1 might be relaxed. The variance-covariance matrix V
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still has the form assumed even though the variance and covariance may

be different functions of the variance components,

1.8.2 Simulation of a Three-Factor Factorial Experiment

The linear model used in this simulation was

YIjkt a M + Al + ABIJ + ACik + ABCiJk + ,ljkt).

Here, M represents the grand mean and all fixed effects, and the

remaining terms are Independent distributed normal with mean zero and

variance given by the associated variance component, The structure of

the covariance matrix for this design u defined In Hocking (1985) is

V m A,(AS + A1) + An2 (As + An) +A1 (As + Ale) + A28 (Ass + An&), (1.5)

where A% - (I/a*t) a, OS ®...Gk d J a', z*4 - l iot,

G0 - Ia, - l/ai3JJ'a 1 if I A T or J If I T,

and A, are the algenvalues of V.

For this model, the variance for Z2 associated with the

terms ccmprislng the bilinear form has variance Var(Z 1) - +

013 + 01s + 0133' Its covariance is cov(ZiZj) - 1.

Two cases of this design were considered, For the first cue

a,-3, as-3 and a3 =-2. In the second case, a, w=3, as = 3,

and as - 4. In the first case, 500 a, x as x as independent sample

from a standard normal distribution were generated and in the second
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cue, 200 ai x as x as were generated. Both used Box-Muller.

Then, a sample of size a, x as x a, w sequentially selected

and multiplied by V1/2 where yi/' is the same u formula

1.5 except that the eigenvalues are replaced by its square root.

For case one, 6 diagnostics were generated per iteration and

in the second cue 36 diagnostics were generated giving 3,000

diagnostics for cue one and 7,200 diagnostics for case two. The

vaiua of the variance components was varied to obtain values of p

between -0,4 and 0,3. Due to the positive definiteness of the

aiance oovariance matrix V, -0.4 was the smallest value one could

expect from this design. The results for both cases are shown in

Table I. I. For case one, the maximum difference for the simulation

and theoretical distribution ranged between 0,037 and 0. 11. However,

for the critical probabilities of ,01, .05, and ,1, the estimated

critical values were small and conservative, The P(C s Carit)

was always larger than what the simulation showed, The difference in

the agreement between the theoretical and simulation Increased as one

increased In probability from 0.01 to 0, 10, The maximum difference in

the two distributions occurred in the center of the distribution. For

the high critical values in case one and all critical values in case

two, the simulation and theoretical distribution agreed, The maximum

deviation between the theoretical and simulation ranged between .009

and .017 for case two. As In case one, the estimated critical values

were conservative.
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TABLE 1.1
Calculated Kolmogorov-Smirnov One Sample Statistic,

D, and Probability Differences at Critical Values for
Simulated and Theoretical Distribution of Variance

Component Diagnostics for Various Values of p
when Variances are Equal

as 3 asa2

Difference at Critical Probabilities

p D .01 .05 .10 .90 .95 .99

-043 0.094 0.007 0,036 0.059 0.027 0.021 0.009

-0.21 0.110 0,008 0.040 0.071 0,016 0,016 0.007

-0.09 0.079 0.009 0.033 0.069 0;011 0.010 0.005

0,04 0.081 0,007 0,038 0.062 0.002 0,007 0.004

0.15 0.096 0.009 0.039 0,071 0.009 0.004 0,003

0,25 0.061 0.001 0,038 0.057 0,000 0,006 0.000

0.41 0.064 0.009 0.036 0.055 0.007 0.004 0.002

0.61 0.072 0.000 0,033 0,058 0,006 0.002, 0.001

0.82 0.037 0.009 0.029 0.022 0,002 0.009 0,001

as w 3 as a 4

-0,43 0.017 0.001 0.003 0.002 0,007 0.003 0.002

-0,21 0,012 0.000 0.001 0.000 0,009 0,001 0.001

-0.09 0.013 0,001 0.001 0.002 0.008 0.002 0.001

0.04 0.015 0.002 0.001 0.004 0.008 0.003 0.002

0.15 0,021 0.000 0.000 0.001 0.009 0.005 0.000

0.25 0.013 0,002 0.001 0.003 0.006 0.003 0.001

0.41 0.010 0.003 0,002 0.005 0.008 0,003 0,000

0.61 0,009 0.002 0.003 0.007 0.006 0.004 0.001

0.82 0,014 0,002 0.0D8 0.011 0.005 0.006 0.006
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Based on these findings, one can use the table of diagnostics

to identify abnormally large or small covariances in the table. This

diagnostic method will allow researchers the tool to investigate

sources of negative variance component estimates, identify outliers

and reveal model deficiencies.

Having developed the distribution of the diagnostics for

bilinear form when the sample is from a set of independent

observations distributed Ns(p, V), the next step is to develop the

distribution for the diagnostics (covariance) in which the assumption

of independent paired observations coes not hold, The development of

this distribution and Its validation is presented below.

2.1 Distribution Theory for the Variance Component Diagnostic

for Non-Independent Paired Observations

The final phase In developing the distribution theory for the

variance components was to consider the cue where the sample

pairs (Zjj, Z5j);(j - 1, 2, ,,,, a%); are from a bivariate normal

distribution with variance-covariance structure

V &I + bJJ' cl + dJJ'

(c.l + dJJ' al + bJJ'

The small letters represent linear combinations of the variance

components as specified by the linear model, I is an identity matrix,

and J is a column of ones. This circumstance arises when dealing

with a linear model of more than one random main effect and then only in regard
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to certain variance components associated with the interaction.

The Representation Theorem presented in Green (1987) allows the

diagnostics for designs of all sizes to be estimated in an

unbiased and efficient manner, regardless of the number of random

factors, or type of nesting. This theorem states that complex

diagnostics can be written as a linear combination of simpler sample

covariances. Each sample covariance Is based on the levels of a

single factor, Thus, the only billnear forms required are of the

type Z1'AZg, in which Z1 and Z3 are vectors of responses that vary the

levels of only one factor, and A-I-JJ'/a1 , in which a, is the number

of levels of that one factor, Thus, in developing the distribution of

the diagnostics for paired samples which are not independent, and

having already attained the distribution for the Independent case, the

distribution of the diagnostics for any design with at least one

random factor will be completed.

2.2 Helmert Transformation

The first step in developing this distribution was to

determine a transformation that could change the variance covariance

structure so that the transformed paired observations would be

independent and have the variance-covariance structure

V al 14
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Using all but the first row of the Helmert matrix as the matrix of the

transformation, it will be shown that the bilinear form

Z1'AZs " X1'Xs2  " X1'A'X2 + (al- ) X112. (2.1)

in which X1 a WZ1, W Is the Helmert matrix excluding the first
row,

A -a11j3"0,)(J. 2 '), and A* - P6.1 "( )(Js'1 ') )

The Helmert matrix, H, Is an orthonormal matrix. The first

row of H is J'/(a2 ) 1 |. For r - 2, ... , a2, the rth row of H has

its first rn- components equal to [r(r-l)]" 1 /, the rth component

equal to -(r-l)/Er(r-l)]1/, and the remaining components equal to 0.

PROOF OF 2.1:

Let Z1' -(?lk., ?12k., ,.,,ik.)

Z2 (?I'ilk*., ?i2k ., ... , ? iak*.),

Z, Na(0, Cli), and

7-2 Na2(0, C22), with

Cli -al + bJJ',

C22 -wal + bJJ', and

Cov(ZI,Zs) - C12 - cl + dJJ', in which a, b, c, and d are linear

functions of the variance components.
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The Helmert matrix H Is:

HIf [a2-1/2j, Wl' ]-[W19 W211- A"0o,

X2 HZ3 W[ XJ i]

Then, X1'X2-Z 1'HHZ2 Z1'Z2, since H Is orthonormal, and

X aX jWI.2 + Z1'W2
tW2 72 - a%2122 + ZI'W2'WZ1

Rearranj1ing terms,
X12OX22 - -1'W2'W2Z2

- -jX ,2112

- Z1
9AZI.

Sinkce A - (417J'/ ) it follows that X12'X12 - X12 'A)2 2 +

(a2 -1 ) XIA2. Thus, the bilineam farm Z1'AZ2 is equal to X,2'X,5 .

Now, the variance covariance structurc of (X,;,Xll ) is of the form

since W2Cl1W2' - al, W2C22W2' a al, asnd WCSA'2' - cl. Having

estabNished that the bilinear form Z1'AZ2 - X21jAX22 + (al-1 ) ý'13H

the next step was to determine the distribution of XU,'AYX2 + (21-1 ) 7Xu5 22.
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2.3 Distribution of Transformed Variables

First, one must realize that the bilinear form can be

written as a linear combination of central chi-squares and

that (as-I ) X12A., can be written as a linear combination of chi-squares.

Specifically, a property of the bilinear form is that

X 9A[(l+P) X'(, -(123f'P)X2 (6.2)2Xxs'A%.lX,s,-a E(÷)3(' 'l)'(').

in which a is the common variance of XU and X22, p is

"the

correlation between X. and X22, and x2 s- is the central

chi-square with (a- 2 ) degreeG of freedom.

PROOF:

Consider the product, XIX2, of deviations from the sample

mean inwhich X1 and X2 are singletons.

Let X' - (X1, X2), Then X = (X1, X2)' w Ns (0, V), where

V 0 c al 102

If A (0/. 1/2 then XIX2 - cX1,X 2 0 ) X1,X2 ) 0
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The characteristic function is given by E(e 4X

-f ~ up [ItX'AX -1/ 2 (X,X ) V (X1,X2 )) dXj dY-i,

which, since k1I-21tAV)V-1) V(I-2tiAV)^ , may be written as

ff2M ',3exp [+ (x,,x2  (C -2itAV 'it"' )(X19X2) dX1 dX2 .

Let, W [ (I-2hcAV)V- )

By the identhty'2vw/ 1 WI1'-f ... f exp E-1/2X'W-1X I dX1 ...dX,~, one obtains,

v V1/2 V(1-2itAVY-I t13

"tO3 1/2
* 1/2 -ti O32

2 1 t p ra

It follows that X'AX 3?-. [(I+ep)K1I - (1-P)K2 ] In which

K, and X,~ are Independe~nt x 12. If Z1 I (Y119YI2'..,yh 2  1)

and Z, - (Y21t , 22~ 9-ys 252 1 then

147



where X, w WZI*t W is the &S-2 rows of the Helmert matrix, and

A w I61-2- ,63. 2J,4.l, Then, the characteristic function

of Z"AZ,'* is

rE (r-p alt *1 US Ew 1ob°1- 1X3

Thus, the dlitVIbution of Z,%AZ,* is equivalent to the distribution

of I/2ovos[( l+p)K 1-(l-p) Ks], where K1 and Ks are independent chi-square

variables with %-2 degrees of freedom.

Second, 6ne must show that (&,-I) It R1 is distributed as a linear

combination of centrul chi-squares. Specifically, If one defines

= (1 2-1)1'/ 1  and Ts = (a'I)I/ 2 , then (?I, ?g) * N3 (O,Z), where

and the distribution of (&2-1) X, X3 is also that of (a+c)x1 -(a-c)XlI.

PROOF:

Lot MAO(xs' V- 1 X3

in which X - WZ, as previously defined. Then

X w NO 3 (0,Y), and X o N2 (0,1/(%-l)Z), where
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P/0a4-6Z1 l &2[-1 J _0

TEr a C1.

Let ?•j (a-l)1/2:. Then ? ~ N2(O,Z) and? -?2 a

Define a 2X2 Helmert matrix, H- ( /3 [1 -1. Then

wt I- (W•',W') - (H?)' [(•'•+?3)/(2)1/'2, (?,-?2)/(2)'/2 1, and

W ow N2 0, 0 a-0

Thus (?,4÷1)/(2)1/2 and (Y1-?•)/(2) 1/" are Independently normally

distributed with variance (a4c) and (a-c), respeotively. By Theorem

2.3 In Hocking (1984),

W2,W IV (a-C)X31, and

Wi'Wi + W2'W4 - m1?3 - (a 2-l)x 1 R2 .
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2.4 Distribution of Linear Combinations of Weighted Central
Chi-Squares

Define C - TI - T., In which

T, mal E 2 .2h + A -0 and

T2 .b, [ 3 x'2.2 + j X'1 ]
a, m

a& > 0, b, > 0, a' - (a+c)/aI • 1, b' - (a-c)/b 1 > 1, and

all the chl-squared variates are independent. The distribution of

T1 can be represented by

FPT(X) " q, F(. 1)+23(x/a1)"

inwhich t qtml and the q are weight constants depending on (a+c)/al and a2.

The weight constant q, is equal to

a " /z(1-(/a ))'1 (r+1/2)

in which r (1/2) - or)l/3 and

A r + 1/2) - , 2r F

PROOF:

Let 02n (t) denote the characteristic function of a central

chi-square with n degrees of freedom and ',IT(t) the characteristic
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function of Ti. Then, 0.,(t) . (1-21t)"/, and,

because the chi-squared variates are Independent,

The characteristic function of a constant times a central chl-

squared variate is given by Robbins, Herbert, and Pitman (1949) as

OeX n (t) - (1.21a*t)"n/' . a(- i)(*.)"/

By the binomial theorem, we have for a* : 0,

a "/r'[1-(- l/a1)z]'"/ zj for IZ c II- i/a&", (2.3)

a* z 1, qj k 0 (j . 0,1,..), and q •1. Since

Ii-21tI"/ : 1, for all real t it follows from (4,3) that for a* k 1,

(1-210')'n/2. - qj (1-21t)"n/2 ". ýq j 0X3 ' (t..s

Now, the characteristic function of T1/a1 may be obtained

from (4.2) and the following defining identity for the constants qj,

where N - a2-1.

Sa"N/3 [-(I-/aZ)zf/ ]. Eq~ j, (174 : 1).

It follows that

qf(T/ m1)(t) (l .21t) -(N/2) E as .1/2 [1-(1- l/Et)(1-21t)" ]"'/2
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(N÷2J)

which is the characteristic function of T1/a1 , Hence, the cdf of

T1/a1 by inversion is =q1 FNai(t), where FN+si(t) denotes

the cumulative distribution function of a central chi-square with N+21

degrees of freedom,

It follows on setting X u a&T that the cdf of T, is given by

r.lqi FN+fl(x/al),

Similarly, the cdf of T2 is given by

FT2(w) ••QJFN+2j(w/bl).

Since T1 and T, are linear combinations of central chi-squared

variates, If fTI and fT denote the densities of T, and T2

respectively, then the pdfs of T1 and T2 are given by

fTj -ý(Qi/) fN+2I(x/a1), and

4, r- ý(qj/b,) f,1j(w/b2).
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PROOF:

E"•qlFN+31(X/al) .• ",I.FN+30(/10',

By the Beppo-Levy Theorem (Morrison, 1987), this

>. Fr4+20x/ad FTI/.(x/al).

Now, by Fubini's theorem (Wheeden and Zygmund, 1977),

F (; ( IQFN+hlx/a1) ) I qF 'X+uI0/111) qf+1x

2.5 Probability ensity for Dlagnostic,

In this section, the probability density function for T1 -T2 - C,

which is the diagnostic when the sample pairs are not independent,

will be developed. Let f(x) and Ww) denote the pdfs of Ti and T,

respeotivwly, By convolution, the pdf of C w T1-T2 is

h(t) -- If( +w) g(w) dw. (2.4)

In the previous section, we have shown that

f(X) " ((qi/al) fN+2i(x/al), xkO, and (2.5)

g(w) , 1(q 1/b 1) fNs,2(w/bl), wO. (2.6)
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Since the series converge uniformly, permitting interchanp of

Integration and summation, we may substitute (4.5) and (4.6) into

(4.4), and lotting M - N, one obtains

Q qj t(sm~s1 +s - 3)/se-('1)j

U x
_R" 2' &+M, S7)It (M+3)/2bl R+3j)' 'r(M+2i)/2) IX((M+2Jb/2)

'• ((.t~bj)/("&•b))w wm•,sj s)/S (i+w)(M*= ')/2 1dw (7

It is worth noting that the Integral given below,

I/r(M+2j/2) r. "'((%j~bj)/(3&jbj))w W (M÷sj'I)/$ ( I+W)(M+2W')/2 dw,

Is the confluent hyperseometric function and is identical with the

function U(s, b, x) discussed by Siater (1%0). Having obtained the

distribution of the diagnostic, the problem of how to evaluate it

remained, This required the development of new recurrence relations

for the definite Integral,

2.6 Distribution of Billnear Form from Non-Independent

It has boen shown above that Z1'AZ3 w XtIX1 + (as-I ) Xtls,

in which X1 is the Helinert transformed data. If a2 - 2, then Zj'AZ4 -

XI'Xs . (%-I ) X113. It hu also been shown that (as-, ) X17. 0

(a+C)X31 - (a-C)X31 , where a Is the variance of X and c is the covariance.

In the linear model context, the variance (a) can

be broken down into a set of variance components comprising the
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covarlance (A, as well as a set that is not contained in the

covarlance (a), Therefore, defining the variance as a w m* P

and the covaraince as b - P, the distribution of

Z1 AZ A- "XJX " w [1A 1+ 4 21 a x2 1

Therefore, for N w 2, the distribution of the bilinear form is the

distribution of the covariance from independent paired observations

with twice the estimated variance,

2.7 Development of New Confluent Hypergeometric Recurrence Relations

2.7,1 Relation of Hypergeometrio and Bessel Function

The calculation of the cdf for the bilineae form when the

sample pairs are not independent required the development of new

recurrence relations for the confluent hypergpometric function, In

the notation of Abramowitz and Stegun (1964), equations 1311,10 and

13.2,5, U(a, b, x) is the confluent hypergeometric function of Kummer

and is given by

U(a, b, x) - l/r(a) Ioe-xttm (l+t)I'"l dt

Abramowitz and Stegvn give two special cases for which

U(a, b, x) can be written in terms of the modified Bessel functions.

Using these relationships, Initial values of the confluent

hypergeometric function for the cdf were obtained as follows.
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For the cue N is odd and I - J, tet r - (N - 1)/2 + i, and

x-2z, Then 2r + I aN+ 2i -N + I +j and r + 1/2 -N/2 i-

N/2 + J. Using Abramowitz and Stegun equation 13,6,21,

U(N/2 + J, N + I + J, x) - U (r + 1/2, 2r + 1, 2z)

-a •I./2 a (2z)"' K,(z)

= Xr'1/2 eX/3 x-(N-3+.2)/g K(N. 1+2l)/2(x/2).

For the cue N is even and I = j, let r - (N - 2)/2 + 1. Then

r + I -N/2 +i and2r+2 -N+21 =N +i +J UsingAbramowitz and

Stegun equation 13.6.24,

U (N/2 + J, N + I + J, x) - U(r + 1, 2r + 2, 2z)

. I4.'/2 e' (2z).(sr+1)/S K(2r+l)/2(Z)

M -1 a2 (N1+h0/ K(N.-,+÷)/a(x/ 2 ),

Note that this expression Is identical to the one obtained for odd N.

Now by choosing I - j - 0 and I - j - I with a - N/2 and b - N one is

now able to calculate two values for the confluent hypergeometric

function for a given value of x. Specifically,

U (N/2, N, x) - U (a, b, x) and

U (N/2 + 1, N + 2, x) a U(a + 1, b + 2, x).
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From these two starting values, a recurrence relation is needed to

obtain the remaining cues involved in calculating the probability

density function.

2.7.2 New Recurrence Relations for Confluent Hypergeometric Functions

The evaluation of the pdf depended on being able to calculate

U(a, b + 1, x) and U(a + 1, b + 1, x), From Abramowitz and Stegun

equations 13.4.16, 13.4.18, and 13.4.19, replacing a with a + 1 and b

with b + 1 In 13.4.16 and 13.4.18, one obtains

(a&x) U(a, b, x) - xU(a, b+l, x) + a(b.a-1)U(aRl, b, x) -0, (2.7.1)

(b-a-I)U(a, b-I, x) + (l-b-x)U(a, b, x) + xU(a, b+l, x) -0, (2.7.2)

and (b-a)U(a, b, x) + U(a-l, b, x) - xU(a, b+l, x) - 0. (2.7.3)

From these, it follows that

(b - a)(b - a - l)U(a + 1, b, x) + (b + x)U(a, b + 1, x)

W x (a + x)U(a + 1, b + 2, x). (2.7.4)

Now, 4.7.1 and 4,7.4 are two equations in the two unknowns

U(a + 1, b, x) and U(a, b + 1, x) and the known quantities U(a, b, x)

and U(a + 1, b + 2, x). The solutions by Cramer's rule are

U(a+), b, ,() (x) IJa+l, b+2, x) - (b+x. U(a, b. ja
Sb, x).(xb (b-a-i) and

U(a, b+l, x) (ax)U(a+l, b+2, x) + (b-a) U(a, b, x)

From these, using recurrence relation 13.4.16 In Abramowitz and

Stegun, with b replaced by b + 1, U(a, b + 2, x) can be calculated in
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terms of U(a, h, x) and U(a, b + 1, x). The process can then be

continued to calculate U(a, b + 3, x) and all other values of b for

a specific a value. Similarly recurrence relation 13.4.17, with a

replaced by a+l, gives starting values U(a + 1, b + 1, x) and

U(a + 1, b + 2, x). Other entries are obtained for the remaining a+l

elements by using the same recurrence relation. These recurrence

relations were used Iteratively to calculate the U functions for fixed

I and all J. Thus, the cdf can be evaluated.

2.8 Turbo Program for Diagnostics from Non-Independent Observations

A computer program to calculate the cumulative distribution of

linear combinations of central chi-squared variables or equivalently,

the variance component diagnostics based on non-independent paired

observations are presented in Orynovicki and Green (1990). The

program is written in Turbo-Pascal and can be compiled and run on any

IBM compatible personal computer on which Turbo-Pascal is available.

The program utilizes Sinmpson's integration method and calculates the

cdf using a tolerance of 0.0000006.

2.9 Validation of the Distribution for the Diagnostics

For p between -042 to 0.8 the theoretical distribution was

com•pared to the diagnostics for Oj, from a three-way hierarchical

experiment with factor I random, 2 nested in 1 and 3 fixed, In this

situation the paired observations comprising the bilinear form

are not independent. The experiment was replicated 500 times for

each simulation. The diagnostic has the form
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S(?ijk.-?i. k.)(?ilJk.-¶/'i, k.)/(a2 -1).

Two cases were considered to determine how well the derived

distribution fits correlated diagnostics from. the diagnostic table.

For case 1, a1 - 2, a2 u 5 and as - 3. For this case there were

three diapnostics per experiment for 012, Case 2 differed from

case I in that a& was Increased to 4. Both cases were generally

similar. The maximum difference for the theoretical distribution in

both cases ranged between 0.02 and 0.06, as shown in Table 2.1.

The difference between the theoretical and simulated numbers

for the critical values of 0.01, 0.05, 0. 10, 0.90, 0.95, and 0.99

ranged between 0.002 and 0.039, with the maximum diffPrvAce occuring

in the center of the distribution. The theoretical numbers were

conservative, as in the independent case.

2. 0 Tabulated Cumulative Distribution for the Diapnostics

Cumulative percentile points of the covariance distribution

for p ranging between -0.7 to 0.9 in increments of 0.1, for sample

size N of between 3 to 10, 15, 20, 25, 30, 40, 50, and for variance

equal to oia are contained in Grynovicki (1990). Due to the restriction of

positive definitness, this range of parameters for p and N should be

sufficient for most designs. Specifically, this table gives the value

of Crlt such that p(C S Cerin) - a for a a 0.01, 0.05, 0.10, 0.90,

0.95, and 0.99. C is a bilinear form from a bivariate normal with

correlated paired observations.
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TABLE 2.1
CalculatWd Kolmogorov-Smlrnov One Sample Statistic,

D, and Probability Differences at Critical Values for
Simulation and Theoretical Distribution of Variance

Component Dialnostics for Various Values of p
from Non-Independent Simple Pairs

Difference at Critical Probabilities

P D .01 .03 .10 .90 .95 .99

-. 2 0.045 0.004 0.028 0.036 0.037 0.029 0.007

-. 1 0.047 0.005 0.021 0.025 0,027 0.022 0.004

-,0 0.035 0.005 0.012 0.032 0.032 0.017 0.003

-. 1 0.028 0.007 0.023 0.024 0.020 0.012 0.002

-. 2 0,034 0.004 0.016 0.024 0.025 0.020 0,003

-. 3 0,041 0.003 0.031 0.035 0.036 0.027 0.006

-. 4 0.037 0.006 0.013 0.033 0.034 0.019 0.005

-. 5 0.030 0.007 0.021 0.019 0.019 0.013 0.003

-.6 0.027 0.006 0.024 0.021 0.020 0.015 0,004

-. 7 0.050 0.002 0.029 0.027 0.028 0.021 0.003

-. 8 0.037 0.008 0.013 0.017 0.015 0.009 0.001

a2 w 4

-.2 0,043 0.004 0,029 0.041 0.036 0.031 0.009

-, 1 0.045 0.003 0,027 0,036 0.030 0.034 0,007

-.0 0.041 0.003 0.033 0.039 0.029 0.015 0,006

-, 1 0.058 0,008 0.028 0.038 0.042 0.028 0.005

-. 3 0.038 0,005 0.017 0.026 0.027 0.021 0.002

-. 4 0.047 0.002 0.020 0.023 0.033 0.024 0.003

-. 5 0.034 0.005 0.019 0.021 0,025 0.019 0.004

-. 6 0.028 0.009 0,023 0.021 0.019 0.012 0.J03

-. 7 0.035 0.006 0.008 0.015 0.020 0.011 0,005

-. 8 0.048 0.006 0.015 0.021 0.013 0.008 0.001

160



2. 11 Illustrated Example Using Eye Glass Manufacturing Experiment

As an illustration of the diagnostic technique in comparison

with its cumulative distribution, the diagnostic from an experiment

previously examined by Green (1987) concerning eye glass menufacturing

will be examined. The data for this experiment are presented in Table

2.2. Factor 1 (run) is random at five levels, factor 2 (pot) is

random at two levels, and is nested in run, factor 3 (journey) is

fixed at five levels, and factor 4 (period) is fixed at three levels.

Factors 1, 3, and 4 are crossed,

In the previous analysis, Green clearly determined that runs 2

and 5 were highly variable and that pot 2, in journeys 2, 4, and 5 was

clearly different from the rest of the data. The journey 2, between

pot difference is extreme, and the journey 4 and 5, pot 2 values were

from a different type of glass than all other responses.

Two diagnostic tables will be re-evaluated and are given in

Tables 2.3 and 2.4. Table 2.3 represents the covarlance

(Tij.t. - ?i1.t.)(Vij.t. - ¶i..t.*)/(a2 - 1) or, in Green's notation, C(i,2/tt').

The variance covariance structure of (?il.t., Mi2.t., ?i1.t.*, ?i2.t*.) is

Sal + bJ2 J2 ' CI + dJ2 J2 )' i

L cI + dJ 2J2' al + bJ2J2', , in which

a - + OnSl/5 + 124 + 01s4/5,

b -0 + 013/5 + 014 + 01354/5
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TABLE 2.2

Glass Manufacture Data

Pot

1 2

Period Period

1 2 3 1 2 3

47 56 100 52 61 88
55 89 93 49 62 97
135 57 56 34 60 72
78 67 113 47 93 118
33 40 128 16 29 130

52 66 36 65 80 40
21 61 49 122 97 79

2 31 39 25 45 54 72
43 72 52 109 120 80
37 51 67 67 85 63

50 61 60 75 139 130
33 27 49 46 58 63

Run 24 39 24 15 33 39

18 18 43 22 16 19
28 42 28 27 19 22

24 34 43 46 66 24
24 49 42 40 117 105

4 21 21 51 30 28 34
21 69 48 36 64 53
76 48 42 39 60 78

31 54 40 19 93 36
34 24 46 16 12 2

5 120 122 120 33 58 107
109 119 '20 25 63 90

69 49 60 34 43 30

162



TABLE 2,3

Dianostics . i(?it,* " ?i,..*)/(a, " 1)

t

1 2 3

1 50.00 4.00 -15.00
t 2 0.32 -1.20 1-1

3 4.50

t*

1 2 3
1 1003.50 658.60 470.40

t 2 432.20 308.70 1 2
3 220.50

tS

1 2 3

1 20.50 49,90 44.20
t 2 121.70 107.60 1 - 3

3 95.20

t

1 2 3

1 12.50 57.00 34.00
2 259.90 155.00 i .4
3 92.50

t

1 2 3

1 1113.90 467.30 571.10
t 2 196.00 239.60 1 5

3 292.80
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TABLE 2.4

Dlasnostics -( -t." -. kt,)(?'k*t." ?.k*t.)/(al - 1)

k'- 1 2 3 4 5

1 250.7 207.1 -247.2 -61.8 -136.5
2 336,4 -131.6 221.3 -41.6

k 3 497.5 357.8 124.8 t - 1
4 620.1 75.5
5 236.3

k- 1 2 3 4 5

1 362.1 -312.8 29.1 -371.0 -107.4
2 799,9 -488.5 153.6 174.1

k 3 631.2 416.2 -41.3 t • 2
4 1009.6 312,6
5 229.7

k*= 1 2 3 4 5

1 1012.7 350.0 -330,4 5.5 337,1
2 676.0 -488,6 41.1 763,8

k 3 1032.3 888.3 103,4 t - 3
4 1286.9 968.3
5 1530.2
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o - On + 013/ and

d w ,1 + 041a/ .

Transforming the Ys with the Helmert matrix would result

In the transformed data having a variance covariance matrix of V with b

and d set to zero. The variance of the transformed data would be

On + #U/5 + #124/5 " 260, the covariance 0. + 13/5 = 210, and

p is 0.8, bpsed on the variance covariance estimates liven

in Green (1987). For these diagnostics, since N is 2, double the

varianues and use the 95% critical value with N o- 2 and p -w 0,8. The

95% confidence Interval, (-98, 1705.6], Is narrower than the 30

criteria used previously, Due to the large variance of cell means for

this table, no outliers were identified. This Is consistent with

the previous results. The high variability of runs 2 and 5, and low

variability of run I is noticeable.

For Table 2.2, the variance of the cell means is 012 +

hovs/2 + 124/2 + 01s4/2 + 01 + 013 + 014 + 0184. Table 2.4 represents

the covariance C(tl/kk t-

The variance-covariance structure of the cell means comprising this

billnear form is

V cl a,

in which a - 01 + On/2 + 01. + #12/2 + 014 + 0134/2 + 0134 + •n4/2 and

c - 01 + #12/2 + 014 + 0124/2'
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Using the estimates of the variance components found In Hocking (1989),

a w 701.17, and b * 92.43. Thus, the estimated correlation of the

independent paired cells of different journey conditions for a given

period is 0.132. Using the distribution theory, one can obtain an

estimate of the 95% confidence interval [-442, 7161. Based on this

Intervai, one can see that period 2 journey 2 and 3 covariance Is

small and period 3 journey (3, 4), (2, 5) and (4, 5) covartances were

outside the 95% confidence interval specified above. The low

covariance in period 2 may be due to run 5, pot 2, period 3, journey

2, which was identified by Green (1987) as an outlier. The large

covariances are because of run 1, Journey 5 and run 5, journey 2,

period 2 and run 5, journey 3, 4. It should be noted that in run 5,

all' responses were from different furnaces than were used in the other

runs.

2.12 Conclusions

The distribution of the diagnostics for a billnear form when

the sample pairs are independent and not independent has been

developed, tabulated, and validated. This theory has been extended to

the diagnostic tables for all random and mixed designs. For the

special case when N - 2, li has been shown that the billnear form for

non-independent sample pairs Is equivalent to the independent case

with the variance doubled.
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Numerical Estimnation and Properties of the Source Density Function

Charles E. Hall, Jr.
Research Dirszmwme

Research, Engineering, and Development Center
U.S. Army Missile Command

Redstone Arsenal, AL 35898-5248

The Source Density Function is a four-parameter class of one-sided probability density functions.
In order to exploit the Source Density Function's flexibility in shape, progams were developed to
estimate the parameters which maximize the log-likelihood function for a given dam set.

A brief review of the Source Density Function (SDF) is presented here a rigorous
development was done by Lehnigk[1]. The SDF, f(x,P), is generated from a delta function initial
condition solution of the generalized Feller equation.

f(x,P) w 0 b-A x-(P-A+1)/2 z(P+0-1)i2 Iq[2(x7lb)P 2.j exp(.b-13 (x3+zP)] (1)

P-(z b p 13)'
z>0; b>0; p<l; 0>0

Iq(.) is the modified Bessel function of the first kind, where q, -1 + (1-p)/[o > -1. The vector P is

composed of the four parameters which are calculated so that the log-likelihood function is
maximized. A data set of observations is formed, which is composed of ordered pairs of the
observation variable Xv, and the relative frequency of that observation fv. The data set,
((xv,fv)lv-l,2,...,n with f0 and fn P60), is used with f(x,P) to form the log-likelihood function
4(p).

n
O(P) in fy In( f(xv,P)) (2)

V-=

It should be noted that as z-.,O both equations (1) and (2) approach the Hyper-Gamma density and
log-likelihood functions for X [, (2]. This will be refered to as the Hyper-Gamma limit of the SDF.

A transforntiaon of the parmeters is useful in simplifying the equations.
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a(IM ZL (3)

For a maximum of the log-likelihood function, the requirement exists that all of the
derivatives of O(P) must equal zero. These equations place a further restriction on a, and it allows
the elimination of the parameter b from the equations.

b13 . (B(13) - a2) / (1+q) (4)

B(13) -E fvexp(I3pv) (5)
Val

pv -in(xv) (6)

For b>O, it is required that B( )- d2 > 0, thus 0 < c <4") Equation (4) allows the elimination

of b from (2), thus O(P) is a three-parameter equation.

n

O(apg) - In 1 + gt In(W/(B(P)-a 2) ) + (ýLp - 1)C - Z B( + fv ln( S,.i(rv)) (7)

B(13)-C 2  v-i

n
C ME fvPv (8)

vM1

Sg.l(r) - (2/r)'I 1 Ig.l(r) (r/2)2k/ ki r(k+g) (9)
k,,O

rv - 2fga (B(P)-a2)"1 exp(Iopv/2) (10)

L- 1 +q (11)

Equations (4-11) form the starting point for the numerical estimation of the source density function

parameters a, J3, and gt.
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MEM"4ODS FOR PARAM= EOWTfON OF THE SOURCE DENS=f' FUNCTION

Initial attemps at parameter estimation of the SDF were based on the simultaneous solution

of the derivative equations of (7) set equal to zero. These equations had the following form.

n
0 - -+ fv (Sq(rv))" d Sl(rv) exp(*4vt2) (12)

v-i drv

n n
0 - (B(3)-.a2)(1+j.3C)- gp 7 fvpvexp(Opv) - a7• fvpv dSq(rv exp(ppv) (13)

v-1 v=I Sq(rv) drv

n
o = PC +ln(.(B(3)-a2)-l) E f+, dSq(rv) (14)

v-i Sq(rv) dq

A three dimensional application of the Newton-Raphson method was used. The functions on the
right side of the equal sign of equations (12-14) were used to form a vector, F(a,,,g.) and a 3x3

derivative matrix of F(,) was numerically calculated. This matrix was inverted and premultiplled
the negative of F(.) to yield a change vector for the three parameters. This method failed to produce
useful results due to the complexity of the 0(.) function which typically had differences between the
cy-derivative and O3-derivative functions that typically spanned 10 or more orders of magnitude. The

derivative based approach was abandoned in favor of direct optimization methods.

Direct optimization of various log-likelihood functions by Powell's Method have been
successful [2,3,4,5], so this technique was applied to equation (7). Initial runs, with the starting
point close to the actual parameters that were used to generate the data sets, were successful. But as

the starting point was moved further away from the solution, Powell's algorithm ran into
difficulties due to its inability to deal with the P3-a boundary generated by B(p)-.y2>0, (and the

flatness of 0(.) ).

Powell's method is an unconstrained minimization algorithm. To change a maximum into a
minimum, the function is multiplied by -1. In this paper all equations will be presented as they

were derived, and it is understood that the log-likelihood function is multiplied by -1 in the
computer programs. The next alteration required is to change Powell's algorithm into a constrained
minimization. For the Log-Normal, generalized Gumbel, and the Hyper-Gamma distributions all

of the constraints were implemented in the calculation of the log-likelihood function. If in the

function subroutine, it was detected that a parameter had gone outside the allowable region, then
the function would force the offending parameter into the allowed domain. This proved satisfactory
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since for these distributions, all of the constraints and the direction vectors for Powell's algorithm
were parallel to the coordinate axis system, but for the SDF this was not the case on the 3-a

boundary. A modification to the Powell algorithm was made in the minimum bracketing

subroutine, MNBRK. If the function detected a parameter which was not in the allowable region a

flag was set, this flag was a signal to NVMBRK that a constraint had been crossed. MNBRK would

then bisect the interval between the last good point and the desired point which had crossed the

boundry, and then try this new point. This procedure is repeated until the test point was in the

allowable region. This improved the region of convergence, but it still remained too limited.

To further modify Powell's algorithm to get a better convergence criterion, it was necessary

to examine the structure of the log-likelihood function for the source density function. Figures 1
and 2 show cuts of the log-likelihood function as it varies with a (0 and p. fixed) and p. (a and

fixed) with the two fixed parameters set at the solution values. The scales on these plots are to
demonstrate the flatness of the function. These indicate that the 0(.) function is a well-behaved

parabolic type function, and this continues even when the fixed parameters are set at non-solution

values, (of course with its extremum value decreased). Unfortunately, this is not the case when
0(.) is made a function of 0, with p and a set at the solution values, (shown in Figure 3). During

the investigation it was seen that the left-hand peak of Figure 3 was the extremum, while the right-
hand was a false extremum. If the g or a parameter varied off of the solution value, the two peaks

moved towards each other and the left-hand peak was absorbed into the right-hand peak. This

demonstrates the existence of a ridge that connects the two maximums of Figure 3 together. This

ridge must be followed by Powell's algorithm to locate the maximum. Figure 4 shows a typical

ridge in a-f-g space.

0 100 200 a 0 2

Figure 1. O(a), 3 and p. constant. Figure 2. O(g.), a and 1 constant.
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I Lg::

4.6 4.7 4.8 J3

Figure 3. O(P), a and A. constant. Figure 4. Powel's trajectory in C-.p. space.

At first inspection It appears that this ridge was exactly what Powell was developed for, but
there are problems with traveling along this ridge. The first difficulty is that the relative change in
traveling along this ridge is approximately I part in 10. to 106, and it takes numerous iterations
following the ridge. When the relative change along the ridge is divided by the number of iterations
required for that journey, this average relative change is usually less than the termination criteria for
Powell's method. Thus, Powell terminates the optimization on a false maximum. Two means were
employed to alleviate this problem. First, the entire Powell subroutine pnckage was rewritten to
perform all calculations in double precision. The evaluation of the log-likelihood function was
always performed in double precision to improve accuracy. With Powell's subroutines being in
double precision, the termination criteria was improved, which helped to increase the range of
convergence. To further increase the convergence area an amplifier function, equation (15), was
applied to the log-likelihood function for a second pass after the termination criteria was satisfied
on the first pass by the Powell subroutine package.

.=cl0(el00(04 0*). 1 ) (15)

0* was the final value of 0 from the first pass of Powell's algorithm. The second pass of Powell

was used to maximize the V function. The amplifier function increases the slope of the function,
while elimLr ring the large dc-offML From earlier work with this amplifier, it was observed that
the termination criteria was effectively changed from I part in 6xI06 (Powell in single precision.0
and ýy calculated in double precision) to I pan in 1010. The actual amount of increase in the
effective termination criteria on 0 is dependent on the difference in 40 and 0*, a small difference

yielded a better termination criteria (I part in 1011) while a large difference lessened the termination
criteria (I pan in 109). Unfortunately; these modifications did not fully solve the problem, but they
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did help. Occasionally, the function was so flat on the ridge that even with the amplifier function,
Powell's termination criteria was satisfied. It appears that increasing the gain of the amplifier
would be of assistance, but Powell's trajectory could be close to a boundary thus causing a large
change which would result in an overflow. kestarting the amplifier with a new 0* did help to

extend the range of convergence; thus Powell's algorithm was running with three passes, one plain
and two with the amplifier.

Even with this, the convergence range did not equal the allowable space. In some regions,
the Powell algorithm would "lock" on to a false maximum. At some of these false maximums, a
plot of 0 as a function of one parameter a, P3, or p. would show a maximum, but a ridge did led

away from this point in a direction oblique to the coordinate axis. During initialization, the Powell
subroutine was given a set of direction vectors, which spanned the space, and Powell's method
searched for successive extremum along these direction vectors. The direction vectors were
changed, allowing an escape from the original false maximum but it would usually fall prey to
another. Similarly, Powell's algorithm at times needed to track along a curved ridge or boundary,
but this would trigger a similar false maximum. To get past the false maximum problem, a steepest
descent subroutine package was written. This method was successful In finding the ridge, but it
failed once on the ridge, due to the flatness.

A variable transformation was then tried. Changing to X. did again help extend Powell's

range,

e• = B(P)- a2 (16)

but this did not fully solve the problems.
Figure 5 is the computer output from four runs. The X3, and g. values are the initial values.

The X, 1, p., b and t, z are the final Powell estimates. All four runs did converge.

CONCLUSIONSI

Application of Powell's method in three passes does produce accurate estimates of the
parameters of the Source Density Function. The major drawback is the requirement of a starting
point that lies in the convergence zone of the global maximum. In previous programs which
utilized the maximum log-likelihood principle with distribution such as, Log-Normal, generalized
Gumbel, and Hyper-Gamma, the moment estimates became the starting point for Powell's method.

The moment estimates for the Source Density Function require simultaneous solution of four
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SOURCE DENSITY FUNCTION CALCULATZONS
Data file is \SDFOATA\SYNEX1S.OAT
Lambda a 8S1600SE+091
Beta - .3e0006ae+00
Mu a .300000E+00

THE POWELL ESTIMATES FOR THE SOURCE DENSITY FUNCTION
Lambda - .126232E+602
Beta * .462324E+001
Mu - .267878E+Q01
b - .118021E+002

Sigma - .343231E+003
z - .124994E+002

Lambda - ,Saaa• 001E~
Bata U *300000E+.00i

Mu - .3M0000E+e80

THE POWELL ESTIMATES FOR THE SOURCE DENSITY FUNCTION
Lambda a .120232E+002
Beta - .462324E+001
Mu a .2B7876E+aIl
b 0 ii18021E+G02

Sigma - .343231E+OM3
z .124994E+002

Lambda a .0SSS00E+000
Beta 0 .300000E+001
Mu - .300000E+S00

THE POWELL ESTIMATES FOR THE SOURCE DENSITY FUNCTION
Lambda - .120229E+182
Iota a .482313E+001
Mu - .20?SB79E+0i
b " .11B519E+002

Sigma - .343193E+003
2 0 .124995E+002

Lambda - .S90000E+001
Beta - .801001E.0011
Mu = .300000E+001
*********.***#4******************* ********************

THR POWELL ESTIMATES FOR THE SOURCE DENSITY FUNCTION
Lambda a .120241E+002
Beta a .462361E9+00
Mu a .*20678E*80U
b a .118127E+002

Sigma a .343338E+003
z * .124992E+002

Figure 5. Four sample runs.
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nonlinear equaions, and this has proved to be mom difficult than the maximum log-likelihood
estiama. -.
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THE HUNTER PR1OBLEM IN A RANDOM FIELD OF OBSCURING ELEMENTS

Shc]n),yahu Zacks
State University of New York at Binghamton

and
M. Yadin

Tcehnion-Israel Institute of Technology

ABSTRACT

A hunter attempts to detect and kill targets within a field of obscuring elements, which
are randomly dispersed (trees in a forest). The targets move along paths in the field, which
are partially obscured by the random elements, When a target enters a visible segment of
a path it takes to [seconds] to detect it, and tt (seconds] to attempt destroying it. If such
a trial is not successful, other independent trials can be performed as long as the target. is
visible, The number of shooting trials that can be attemnpted depends on the number and
lengths of the visible portions of the path. Lower and upper bounds for the probability
of destroying a target are determined by using the methods of random visibility measures
previously developed by the authors,

Key Words: Poisson Shadowing process, Bernoulli Trials,
Visibilii-y Probabilities, r-rcduced measure of
Visibility, Detection Probability, HittingProbabilityd.

*Partially support ed by Contract DAAG29-83-K-• 176 and Contract DAAL03-sg-K-0129
with the U.S. Army Research Office.
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0. Introduction
A hunter is trying to detect and hit a target in a forest., Suppov(' that a tar•et is moving

along a path in the forest and the hunter islocated among the trees ntt sofW (fistitnce fr'om
the path. The path is only partially visible to the hunter, the invisible (shadowed) portion
of the path is obscured by the trees which are dispersed randonmly between the huinter and
the path. A target can he detented by the hunter if at l•ast a certain part of it is visible,
After detection of a target, the hunter starts ihooting, The target continues to move along
the path in the same pace. During each shooting trial the target crosses a length of r
of the path. Thus the number of shooting trials in each visible segment depends on the
length of the segment. The shooting trials stop either when the target is hit or when it
enters an invisible portion of the path. When the target onters another visible segment, it
has to be detected again. For simplicity we assume that the shooting trials are Bernoulli,
with probability of failure q, 0 < q < 1.

The problein of target hunting can be treated as a two or three dimensional shadow-
ing problem. Two dimensional random shadowing problems were previously studied by
Chernoff and Daly (1], Likhterov and Gurin [2], Yadin and Zacks [3,4], The methodology
developed in the present paper is also applicable to three dimensional versions of the above
problem. For example, if a hunter Lries to shoot down a helicopter whose flying course
is partially obscured by crowns of trees. The three dimensional shadowing problem was
previously studied by Yadin and Zacks (5].

In the present study we develop approximations for (a) the probability of detection:
(b) the probability distribution of the maximal number of shooting trials N; and (r) the
probability of survival of the target, We also provide numerical exn,iples to illustrate the
goodness of these approximations.

1, The Model, Measures of Visibility and Failure Probabilities
Suppose that the hunter is located at the origin, 0, and let C denote the path of

the target, C.' is assumed to be a smooth star shaped eurve, defhitid by a pitc-wis,
differentiable function '(,5),SL s <: sti, representing the distance from 0 to C' in

orientation s. The polar coordinates of a point P on C' are (r( ),), The end-points of

C are P and P . The length of C is

L = (,s),ds (1, 1)

whcre
() = r( d)+

drs,

The trees in the forest are presented by random disks dispersed in a region between 0 and

C, Each random disk is characterized by coordinates (p, 0, y), where (p, 0) are the polar
coordinates of its center and y is its diameter. The coordinates (p, 0, y) belong to a set S
in R 3 satisfying conditions which assure that 0 is not covered and C is not intersected by

random disks. Let B be the Borel a-field on the sample space S, mi(d let N{AI} designate
the number of disks whose coordinates'belong to a set B of B. We assuzni that., for each
BeB, N { B) is a random variable having a Poisson (list rihi itioln with IIIoaI

uJJ-AIfJfJ H(d, 9),acauw,,,o ), (1.2)

B
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where G(yip, 6) is the conditional CDF of y, given (p, 9), and H(dp, d9) is a o -finite
measure of (p, 0). Such a random field of disks is called a Poisson random field.

A point P on C is said to be visible if the line segment • is not intersected by any
random disk. A point which is not visible is in a shadow. The measure of total visibility
on C is defined as

V = f r(s)l(s)ds , (1.3)

where I(s) = 1 if P is visible, and 1(s) = 0 otherwise. Notice that V is a random
variable representing the total length of the visible portion of C. V is a sum of a random
number, Ai, of visible segments of C having random length X1 . X2, .... .i : i.e.

M
V= XE . (1.4)

i-I

A target is detected only if there exists at least one visible segment of length greater
than the minimal path length r. required for identifying the target. In order to de-
velop a formula for the probability of detecting a target, we introduce the notion of
r=-reduced visibility measure, V(r), which is the total length of visible segments, each
one reduced by r units, i.e.,

M
V(r) = E (X, - r)+ (1.6)

i-i

where a+ = max (a, 0). The probability that a target is not detected is

p.(.) = P,'{V(t0 ) = 0), (1.6)

On the other hand, the probability that C is completely visible is

P, = Pr{V(r) = L - r}, for all 0 _< r < L. (1.7)

Indeed, when C is completely visible, AM = 1 and X 1 = L. Let N denote the number
of shooting trials, after detecting a target. If a single shooting trial requires a setment of
length r to be completely visible, then

MN• = E [(Xi - ro)+/7-,'] 1

where [a] is the maximal integer not exceeding a. Notice that

I M 1 M

7E (X, -'r. - T)+5N <_ 1 (X,-)+ (1.)
iml1

Hence, according to (1.5) and (1.9),

V(rIt)/r N !5 V(r 0,)/r (1.10)
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whcre Tr -- r. + r.
If the probability of failure in each shooting trial is q, and the shooting trials are inde-
pendent (Bernoulli), the number of shooting trials required until the first Success. J, is
distributed geometrically. Accordingly, the probability of failure (not hitting the target) is
Q = E{qN4}. Thus. according to (1.10). lowcr and upper bounds for Q are, respectivCly,
Q,. and Q1, where

Qj = E{q"(fi)I/) . = 0;i (1.11)

Notice that Q{ is the value of the MGF of V(ri) at the point t = (log q)/r.

2. The Moments and Moxnent Generating Function of V" ()
For the sake of determining the moments of V(7) we introduce the following definition

of this measure,

V(1) = / s1(s)1(.)ds , (2.1)
*,L,r

where It(s) = 1 if a segment of C of length r, centered at (r(s), s) is completely visible,
and I,(s) = 0 otherwise. qL,, and su,, are direction coordinates of points within C. of
distance r/2 along C from SL and su respectively. More formally, let

L(s) = [ l(y)dy. (2.2)

Then. SLr = L-'(r/2) and SU L-(L- r/2).
The n-th moments of V(r) is thus

r•,,(r) = E {(J ,1(s)()ds)"}
'Lt~r,, ,,(2.3)

= n! Ef ~'.jTz~ 1 Lv').i

"." i=1i=l

The set .4A,,, is the simplex

A,,. = {(SI, .... SP SL ,r- < si < ... < .,, K -,.-} n (2.4)

Furthermore, E{fI 7 (si)1 is the probability that the union of n scgmcnts of C, each one
i=1

of length r, centered at n points having direction coordinates s, < ... < s", is completely
visible. This probability is designated by p,(sI,.., sn; 7). Thus the n-th moment of V(r)
is

r p n
= n!] *= n! pn(si... - , -5n: 7)fjl(.5i )d.,i . (2.3)

A=1

The method for determining p, (s. i, .... , s,,; r) and /1,,(r) is based on a general inethodology
(,lveloped by Yadin and Zacks [3,4] for the special case of T = 0 the imodihcat.ions required
for r > 0. are given in a Technial Report [6].
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3. An Anoroximation to the CDF of VTr1
The cumulative distribution function (CDF) of V(r) is a mixture of a two-point distribu-

tion concentrated on {0, L - r} and a distribution concentrated on the interval (0, L - r),
For the purpose of presenting the approximation discussed below, we consider a normalized
imeasure of visibility W(r) = V(r)/(L - r), which is concentrated on [0,1). The CDF of
W(r) can be represented as

0 , ifw<0

Fr(w)= po(r) + (1 - p(,r) - p,)F *r (u) 0 < .o < 1 (3.1)
1 ,: l<w .

If, for example, G(ylp, 0) is absolutely continuous then F,' (u,) is an absolutely continuous
CDF on (0, 1). Let u.,(r) denote the n-th moment of W(r). Obviously, 77,(r) = (L -
r)n .(,r), n = 1, 2,....
Furthermore, for n = 1,2,...

=,.(= P1 + (1-( - -P,) w" dF,(w), (3.2)

Applying the Dominated Convergence Theorem one immediately proves that lim p/,,(r) =
It -00

p, for all r > 0.
Explicit expressions for p.(r) and F,.(w) are not available. We apply here a beta

approximation to F•(w) and provide a numerical approximation to p0(r), This type of
mixed-beta approximation was applied also in [3,4,0]. As will be shown in Section 6, in
some special cases, the first ten moments of W(r) and of the mixcd.beta approximation are
very close. This indicates that in those cases one has a highly effictive approximation. In
cases whe.,re the moments are not in agreement better approximation should be attempted.
The approximating beta-mixture CDF is given by the formula

0, if to <0
(W)= +(1-r) ,((r)- pi)(r,3) ,0 • w < 1 (3.3){ ,if 1 < u.,,

Swhere I,(a,/3),O :_ w :5 1,0 < at,# < oo, denotes the incomplete beta function ratio.
The probability p1 of complete visibility of the segment (SL, S.) of C is determined by
the shadowing model, as shown later. The values of p0(r), a, and #,. are determined by
equating the formulae of the first three moments of .Fr(w) to those of W(r), as shown in
(3].

4. Bounds for the CDF of N and for&Q
Inequality (1.10) yields lower and upper bounds for the CDF of N. Indeed, from (1.10),

rn rP{N•,z F) (4.1)F r.( l r) !5 Pr{(N :_ n} !5 F,,(_ rn 41

The CDF's in (4.1) can be approximated by the mixed-beta CDF (3.3). According to
(1.11), the lower and upper bounds, for the failure probability Q, are the Nvaiue of the
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MGF of W(rj)i = 0, 1, at the point t =(L - 'ri) log q. Let G,(t) indicate the MGF of
W(r). This function can be expressed in terms of the moments of W(r) as

G.(t) = 1 + pl(e' - 1)+ t" -0 < t < 00, (4,2)
n=I

Since p.(,r) 1 0 as i grows the infinite series in (4.2) converges fater than et , and
therefore a small number of terms will often provide a good approximation. Another
method of approximating G,(t) is by employing the MGF of the mrixd-beta distribution
(3.3) with P(r), a, ald Or,

5. gumaEx
Inttfe present sectin we provide an example which demonstrates numerically the results

of the present paper. We consider the case of an arc C and annular strip S, which wa8
discussed in Section 6.1. The parameters of this case are:

OL = -wT/2,SL = -ir/3,eu = r/3, Ou = 7r/2,r = 1,w = ,6,u - ,4, A = 6.

In addition, the diameters are uniformly distributed over the interval (,1, .5).
In Table 5.1 we present the first 10 moments of W(r), for r = 0(.1),4. The correspond-

ing moments of the mixed-beta distribution (3,3) are also given for comparison,
As shown in Table 5.1, the first ten moments obtained from the mixed-beta CDF, P-'(w),
difer from those of the correct distribution only at the 4th decimal place. This reveals an
excellent approximation to the CDF of W(it) by P',.('w), in the case under considcration.
In Table 5.2 we provide the parameters of the mixed-beta distributions associated with
Table 5.1.

The values of fi.(r) in Table 5.2, provide the mixed-beta approximations to the probabil-
ities p.(r.) of not detecting a target. This is obviously an increasing function of r. Thus,
in the present example, if r. = ,l 1.(r.) = .012 while if r. = .4,j),(,r.) = .043. pi = .27 is
the probability of complete visibility along the path. Since the moments of the mixed-beta
distributions F?(w) fitted so well those of W(r), we replace F•, ( _ with iF ( -r , i =

0, 1, In Table 5.3 we present F for ri =0(.1).4,r=.

The values of Qi = E cxp(tjV(rj)}) where t; = Sn - $L - 7i log (q) with q = .8, are7"

also given in Table 5.3.
As seen in Table 5.3, if r = .1 and r, = .1 the lower bound of Q is .0967 and the upper

bound for Q is .1273. If however, r. = 0 then .0704 < Q < .0907.
The bounds for the CDF of N are read from Table 5.3 in a similar manner. For example,

if r. = 0, 71 .1 + re = .1 then for n = 6,.0435 5 P{N <.) 6) 5 .0785. If, r. = ,1 then
ri = .1 + ro = .2 and .0785 < P{N < 6) < .1253. Thus, from the flrst two columns of
Table 5.3 we obtain that, when r' = 0, the expected number of trials, E{N), is between
13.7 and 15.1.
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Q. 3 4 5 6 7 8 9 .1.0

0.0 1 .738 .600 .517 .462 .4251 .398 .378 .363 .351 .342

S.738 .600 .517 .463 .4251 .398 .378 .363 .351 .342

0.1 ,704 .5 bi .479 .427 .393 .369 .351 ,338 .329 1 .321
.704 .561. .479 .427 .3931 .369 .351 .338 .3291 .321

0. .7 .2 43.91 . 347 .332 .321 .313 .

. 671 .526 .447 .3991 .347 .332 .321 .313

0.3 641 .497 .421 .377 .349 .330 .318 .308 .302 .29
S641 .497 .421 .377 .349 .331 .318 .309 .302 .297

- -- - . -

0.4 .614 .471 .399 .359 .334 .318 .307 29 . 4 .28
.614 .471 .399 .359 .334 .318 .307 00 .294, .290

TABLE 5.1 Moments of W(•) (upper line) and of F (w) (lowr
line) forT =0(.1).4 a.d n - 1, .,10.

T O I Pot) F,•

0 ,2353 .0064 i .27 3.3905 1.8$Jd8

.1 .2559 .0119 .27 3.0675 2.0334

.2 .2747 .0194 .27 2.8000 2.1640

.3 .2917 .0298 .27 2.6076 2.3093

.4 .3069 .0431 .27 2.4814 2.4808

TABLE 5.2. The Parameters of the Mixed-Beta Distributicn

F(w) for T - 0(.1).4. ic denotes the standard

deviations.)
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0.0 0,1 0.2 0.3 0.4

0 0.0064 0.0119 0.0194 0.0298 0.0431

1 0.0065 0.0122 0.020J 0.0318 0.0466

S0.0075 0.0147 0.0255 0.0411 0.0613

3 0.0104 0.0211 0.0375 0.0804 0.0894

4 0.0166 0.0332 0.0577 0.0906 0.1307

5 0.0273 0.0520 0.0870 0.1314 0.1836

6 0.0435 0.0785 0.1253 0.1819 0.2458

7 0.0662 0.1131 0.1723 0.2405 0.3145

8 0.0960 0.1557 0.2269 0.3052 0.3865

9 0.1333 0.2059 0.2879 0.3736 0.4585

10 0.1782 0.2628 0.3532 0.4430 0.5272

11 0.2303 0.3252 0.4209 0.5106 0.5894

12 0.2890 0.3914 0.4884 0.5735 0.6423

13 0.3531 0.4592 0.5529 0.6288 0.6836

14 0.4208 0.5261 0.6115 0.6738 0.7117

15 0.4902 0.5891 0.6613 0.7063 0.7265

16 0.5582 0.6448 0.6992 0.7249 1.0000

17 0.6213 0.6896 0.7226 1.0000 1.0000

18 0.8750 0.7183 1.0000 1.0000 1.0000

19 0.7139 1.0000 1.0000 1.0000 1.0000

20 1.0000 1.0000 1.0000 1.0000 1.0000

i 0.0704 0.0967 0.1273 0.1621 0.2000

TABLE 5.3, The COF F with T - .1, T =0 1) 4,
Ti L-Ti - '

L-su- SL; and the corresponding MGF Qi"
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COMBAT MODELING

One afternoon of the 35th Conference on the Design of Experiments in Army

Research, Development and Testing was devoted to a Special Session in the

important area of combat modeling. First on the agenda was a paper by Donald

H. McCoy entitled "Statistical Issues Related to Combat Modeling," and is

published in these proceedings in the format of a slide presentation. The

author advised the editor of these proceedings that most of the slides are

self-explanatory; some are not. He figures that anyone who really wants to

follow up would contact him. The title of the second paper planned for this

session was "The Ballistic Research Laboratory Firepower Control Simulation

from Inception to Validation," and is published in these proceedings.

Unfortunately, its author, Ann E.M. Brodeen, was unable to attend the

conference. Her place on the agenda was filled by a paper entitled "A

Nonparametric Approach to the Validation of Stochastic Simulation Models" by

William E. Baker and Malcolm S. Taylor. The last paper of the Special Session

was presented by Eugene Dutoit. The attendees were given a thirty-page handout

that he prepared for the convenience of the analyst who has to examine the

results of force-on-force combat modeling. He provided these proceedings an

abstract of this handout.

Preceding Page Blank
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9 TRADOC ANALYSIS COMMAND 9
0 (TRAC)

MISSION
The mission of TRAC Is to conduct studies and analysis to
support doctrine, combat and training developments In the
Concept Based Requirements System, lead the TRADOC team
conducting major studies and analysis; and develop and
maintain analytic tools, scenarios and simulations for
analysts and training of Airland Battle operations worldwide

GOALS
"* LEADERSHIP

A Command whose leaders at all levels possess the highest
standards of ethics and professionalism, committed to
excellence In mission accomplishment and the well-being of
subordinates

* CENTRALIZED COMMAND OF ANALYSIS
A Command which provides analytic service based on a well

developed and managed study program with corporate
development of taskers and plans and fully coordinated
execution

* INTEGRATED ANALYSIS
A Command whose analytic process ensures a balanced
representation and linkage of the Army's functional areas
and echilons In a worldwide Joint/combined operations and
environments which are simulated and analyzed

* DIRECTED RESEARCH
A Command which continually explores emerging technologies
and Innovative approaches and harness them to Improve the
quality and timeliness of Its analytic products

* QUALITY PRODUCTS
A Command which Is committed to excellence In Analysis and
delivers timely, high quality analysis and simulations to
meet the needs of Army leaders and trainers

"* PROFESSIONAL WORKFORCE
A Command composed of military and civilians who possess the
highest ethical and professional standards, and the desire,
skills and ability to produce the finest analyses for the army
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ATTRITION COEFFICIENTS

INTERACTION OF FOUR PROCESSES

* LINE OF SIGHT

* TARGET ACQUISITION

* TARGET SELECTION

* FIRING AND KILLING

Awh x I x PF

EFK

WHERE

h = PROBABILITY THAT A TARGET BEING FIRED ON OR
ACQUIRED WILL BE DESTROYED BY THAT FIRER
BEFORE LINE OF SIGHT IS LOST OR THE TARGET
IS DESTROYED BY ANOTHER FIRER.

EFK " EXPECTED TIME THAT A FIRER SPENDS FIRING
AT A TARGET WHICH HE HAS ACQUIRED AND
SELECTED WHEN THE ENGAGEMENT ENDS IN A
KILL BY THE FIRER (CONDITIONAL KILL RATE).

PF a UNCONDITIONAL PROBABILITY OF FIRING

TRADOC ANALYSIS COMMAND 0
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ATTRITION COEFFICIENT
ASSUMPTIONS

EXPONENTIAL DISTRIBUTION OF

"* TIME TO ACQUIRE

"* DURATIONS IN VISIBLE OR INVISIBLE STATES

"* TIME TO KILL

EFFECTS OF AN AGGREGATE GROUP CAN BE
REPRESENTED BY A NUMBER OF
"AVERAGE" ELEMENTS

TRADOC ANALYSIS COMMAND 0
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BASIC PARAMETERS

* NUMBER OF FIRERS

* WEAPON CHARACTERISTICS
- RANGE
- FIELD OF REGARD

* NUMBER OF TARGETS IN RANGE

* PROBABILITY OF LINE OF SIGHT

* ACQUISITION RATE

* RATE OF MOVING OUT OF LINE OF SIGHT

* RATE THAT OTHER WEAPONS KILL TARGETS

s SELECTION PRIORITIES

* KILL RATE

* FIRING RATE

TRADOC ANALYSIS COMMAND
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THE BALLISTIC RESEARCH LABORATORY FIREPOWER CONTROL

SIMULATION FROM INCEPTION TO VALIDATION

Ann E.M. Brodeen

Director
U.S. Army Ballistic Reeareh Laboratory

A7TN: SLCBR-SE. W
Aberdeen Proving Growd MD 21005.5066
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Abstract

The Ballistic Research Laboratory Firepower Control Simulation
(BRLFCS) is designed, in part, to support the on-going investigation of
new ways of attaclking the problem of data distribution on the
battlefield. Ideally, prior to being utilized, the model should be val.-
dated, ie., tested whether or not It reasonably approximates the process
of distributing tactical information across the battlefield. However,
model validation generally assumes the availability of empirical data in
order that some comparison may be made between the output gen-
erated by the model and real-world data. Unfortunately, a very limited
empirical data base exists for the validation process. This paper pro-
vides an overview of BRLFCS related issues, i.e., characteristics, sup-
ported applications, planned modifications. More importantly, a discus-
sion of an approach proposed by Iman, Helton, and Campbell for vali-
dating large-scale computer models by replacing empirical data with
model output will be presented in the context of the BRLFCS validation
process [1,2j.
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I. Introduction

The BRLFCS is a large-scale information distribution model developed by the Weapon
Systems Technology Branch (WSTB), System Engineering and Concepts Analysis Division
(SECAD), BRL Although a limited verification has been on-going as the model has evolved,
the question has been continually raised as to whether the model could be statistically vali-
dated.

Currently, limited data exists for only a few tactical elements, e.g, the fire support team
headquarters (FIST HQ), the Field Artillery Battalion Fire Direction Center (FA Bn FDC),
of the several included in the BRLFCS. This data was collected over the past several years
from statistically designed firepower control experiments conducted in both research facility
and field environments [3,4,5,6,7]. From the scope of the previous tests, it became evident
that significant monetary and human resources must be expended to collect firepower control
data for even a single tactical node. However, the WSTB is constructing its own Firepower
Control Research Facility (FCRF) which should ease past resource burdens tremendously.

Statistical validation of the BRLFCS is beset by not only the lack of experimental data,
but costly simulation runs and large numbers of input variables with differing characteristics,
e.g., qualitative and quantitative, discrete and continuous, ranges covering several orders of
magnitude. These are all familiar problems facing anyone wishing to validate a large-scale
simulation model. Although there has been innovative research done in this area, It, too,
assumes the availability of at least some empirical data [8]. Fortunately, there is a technique
which holds promise for validating large-scale models encumbered with the types of
aforementioned problems. This generalized technique was proposed by Iman, Halton, and
Campbell and li outlined in a two-part journal article [1,2].

This paper broadly outlines the techniques being proposed to validate the BRLFCS and
the prelininary steps which have been completed at the time of the writing of this paper to
place the validation process in motion. With this in mind, there are no results to report at this
time. However, the author would like to solicit comments and critiques of the proposed solu-
tion to this problem, particularly from those who may have actually used the methodology.

II. The Ballistic Research Laboratory Firepower Control Simulation

a. Characteristics

The BRLFCS will be used to evaluate brigade (bde) area firepower control concepts for
maneuver (mvr) and fire support elements. It is not intended for the model to be all-
encompassing, but rather to provide an overview of the distribution of tactical information
across the battlefield.

Some of the relevant features of the BRLFCS are presented in Figure 1. The version
represented is a maneuver battalion (mvr bn) supported by field artillery units and is the ver-
sion which will Initially be validated. There also exists a brigade version which differs from the
battalion version in scale only. Of particular importance with regard to the validation process
is the fact the BRLFCS is a stochastic model, where stochastic model is hereby defined as
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one in which, for each set of input values, a set of output values occurs with a certain proba-
bility. With such a model, any number of the input variables may be deterministic, so long as
at least one is stochastic. Although a deterministic simulation was initially considered, in
order to meet anticipated needs, a certain degree of randomness was built Into the model,
with the capability to suppress it if desired. Therefore, certain features of the BRLFCS were
also designed to be stochastic. For instance, provision was built in to select the time a mission
is initiated. These times may be either assigned explicitly, or the mission initiation rate, le.,
number of missions per hour, can be given and the times assigned based on a random number
string.

* Land Based

• Any mix of Blue Forces, mvr bde and below,
Including relevant fire support

• Supports any conflict for which data transmission
requirements can be specified

• Resolution down to individual radios/data distribution units
operates with "260 in game; provision for 500

0 Written in 'C'

* Input requirements: networks; units; transmission lengths
and times; transmitter characteristics and locations; scenario data

• Outputs: unit and network loadings; queues; message and mission
timelines

a Full scale runs made on a CRAY
Reduced scale runs made on a Gould 9600

* Transmissions may be either TACFIRE or packet format

• Accomodates both TACFIRE and packet switching networks

0 Processes performed in parallel

Figure 1. BRLFCS Features
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b. Concept

Although the simulation was planned so that it will be able to support future
Army/DARPA Command & Control Project (ADDCP) activities, its principle function will
be to demonstrate and evaluate the potential of new concepts of dynamic fire support
management applications at the fighting level (bde and below), in particular the BRL Infor-
mation Distribution System (LDS) fact-based technique [9].* In support of the IDS, the
BRLFCS will be used to predict those links and/or procedures for data dissemination that
result in excessive burdens on specific tactical nodes or networks, and to determine which
aspects of the Information flow have deleterious effects on mission duration time or asset util-
ization.

Overall, utilization of the computer simulation model should help narrow the focus of

the on-going tactical computer science research, preventing It from pursuing "blind alleys".

c. Planned Modifieations

Since the BRLFCS Is designed to address specific issues while continuing to support the
tactical computer science research effort, the simulation can be modified as needed. One
such issue which may necessitate investigation, and which directly impacts the build up of
queues in the network, is the manner in which high-priority missions entering a queue are
handled. Normally this type of mission should be inm'ediately advanced to the top of the
queue for processing; however, the BRLFCS presently handles all missions on a first-In-first-
out (FIFO) basis. While provision has already been built into the model to accomodate prior-
ity missions, the computer code has not yet been changed to address this issue.

Two other Issues which the simulation does not presently address are unit attrition and
multi-path information routings, i.e., a more advanced scheme for routing packet message
types (only) around the battlefield. These two issues are actually related in that, supposing a
unit is operating at reduced efficiency, it may become desirable to reduce, or supress alto-
gether, the amount of message traffic passing through that node. Under the existing routing
algorithm pattern in the BRLFCS, this is impossible. As can be seen from Figure 2, the net-
works are now connected by single gateways (located at nodes 49 - 52, 54, 56, 78, and 80),
thus forcing a transmitted packet message to follow a single path regardless of the number of
times the message must be sent. Such a scheme may allow queues of unacceptable length to
build up quickly.

noThe basic concept of tle IDS Is to den a system capable of representing. storing. disseninatIng and ditiphyng facts In a tactical
distributed computer environmient.
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III. Validation of the BRLFCS

a. Verification and "Face Validation"

During the course of its evolution, the BRLFCS has been undergoing almost continual
verification; in other words, the correctness of the model is being established. This phase

may be loosely described as "debugging" the program, e.g., determining the reasonableness of

values of certain model input variables and the correctness of the computer coding used. The
'C' program language allowed the BRLFCS to be easily structured into modules, or subpro-

grams. By running the model using data employed in its construction, and observing the out-

put from these modules, both the developer as well as "experts" knowledgeable about infor-

mation distribution system models feel comfortable the model is behaving acceptably. When
"experts" are insured a simulation is realistically representing the assumptions upon which it is I /

based, this is often refered to as a model having "high-face validity".

Performing such a verification is allowing for a more efficient, simpler simulation

design, which will eventually account for savings in computer time. Also, by previewing the

output of the simulation modules, an experimenter is protected against anomolies which
might occur In the responses when the model Is used.

b. Anticipated Validation Approach(es)

It was originally envisioned that verification and "face validation" of the BRLFCS, as a
complete system, would be the best that even recent advancements could offer, particularly in

light of the difficulty in obtaining experimental data. Winter, et al, states, "The quality of the
component models and the excellent knowledge of the random process along with a sys-
tematic verification must be a substitute for validation [10],"

However, a literature search unveiled a sensitivity approach to the validation of large-

scale computer models, which to the author's knowledge, has not been utilized at the BRL

The approach is fully outlined in a two-part paper by Iman, Helton, and Campbell. Their

approach focuses on the construction of a response surface as a replacement for the model,

Underlying this approach is the substitution of model output for exuerimentml data (due to

the lack thereof). The remainder of this paper will highlight some of the features and stra-
tegies of this methodology which are being implemented into the validation of the BRLFCS.,

Also planned is a statistical validation of the tactical nodes for which experimental data

already exists (and which is independent of any dat. utilized in the development of the simu-

lation). Referring ,o Figure 2, the tactical elements which will be validated are the FIST HQ,

nodes 69 - 72; Field Artiilery Battalion Commander (FA Bn Cdr), node 77; FA Battei-, Fire

Direction Center (FA Bry FDC) positioned at the FA BTRY HQ, nodc 80. Although some
similar type elements may be currently co-located with other types, or may even change their

physical location in future applications, they are otherwise generic in nature, e.g., the func-
tions of FIST node 69 are equivalent to FIST node 70.

The approach for validating these nodes will entail a nonpaiametric procedure recently

developed by Baker and Taylor for a stochastic computer simulation model [8].
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IV. Strategies and Features

a. Preliminary Discussions of Model Input and Output Variables

Although numerous types of descriptive data will be collected during each simulation
run, three model outputs have been identified as the measures that will be used in validating
the BRLFCS. The three outputs are: 1) net usage, L.a, the percent of time a specific net is
occupied by message transmissions; 2) unit utilization, Le., the percent of time a specific unit
is occupied with handling message traffic; and 3) mission duration.

The formats of the required BRLFCS inputs vary. Some require the simple assignment
of a numericul value for program identification purposes only, e.g., packet radios assigned a
code of 6, while others are strictly deterlnTnistic or stochastic in nature. Still others may
currently be designated as either deterministic or stochastic as mentioned in Section ll.a.

Most of the present effort focuses on discussions being held between the model
developer end the analyst. As a result of these discussions, several issues were identied as
impacting the selection of an appropriate sensitivity technique. First, the developer has pro-
vided the analyst with an assessment of each input variable's anticipated impact on the model
output based on his "expert" opirnon. Second, for analysis purposes, it is being assumed that
nonlinear relationships with the model outputs may exist. This does make the construction of
an appropriate response surface a bit more tedious, but doable. However, it is also being
assumed that there are no 2-way or above interactions among the input variables. Third,
since the three output measures constitute a time dependent function of model input, each
Input variable must be examined to determine whether its importance changes significantly
over time.

b. Input Vector and Significant Input Variables Selection Techniques

Obviously, in order to fit a response surface, model output must be obtained for various
values of the input variables. The choice of which sampling scheme to use to select values for
the input vectors presented a problem. Random sampling is not appropriate and, as for the
other possibilities, e.g., stratified sampling, double sampling, it nearly boiled down to a "grab
bag" selection process. The sampling technique must take into consideration the possibility
that ore or more of the input variables might change in importance over time, as well as
insure that all portions of each variable's sample space will be represented by input values,
even when that distribution of values covers several orders of magnitude.

The Latin Hypercube Sampling (LHS) technrque claims such advantages over other,
more common, sampling schenres [1,2,12]. Another feature of this technique which makes it
even more advantageous to the BRLFCS validation process, Is that the probability distribu-
tions used with UiS do not necessarily have to be the "true" distributions In fact, if preferred,
the range of values for the input variables may be used in place of probability distributions.
For the majority of the BRIFCS input variables, their ranges of values is the only information
available.
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c. Input Variable Ranking and Response Surface Construction

One of the objectives of this sensitivity analysis will be to obtain a ranking of the poten-
tially important input variables. This result will be used to help drive factors selected for
future IDS testing. There are several regression techniques which may be used to select a
"best subset" of the predictor variables. For the BRLFC"S validation, stepwise regression will
be utilized initially to construct a response surface based on a linear combination of the
independent (input) variables [13].

Following an initial fit, several things should be checked, e.g., is the fit adequate, con-
sistency of independent variable selection if similar dependent variables are present, are the
predictions reasonable. If the response surface is not providing a suitable representation for
model output, then additional work is needed. Earlier it was mentioned that there is the pcs-
sibility that the relationship between some, or all, of the BRLFCS input variables and the out-
puts is nonlinear. Iman, Helton, and Campbell suggest the use of rank regression as
developed by Iman and Conover [14]. Rank regression is a rolatively simple concept. Data are
replaced with their corresponding ranks whereby usual regression pr'cedures may be per.
formed on these ranks.

d. Other Statistical Considerations

Only a few of the ideas that must be considered for the validation of the BRLFCS, or for
that matter any sensitivty analysis, have been outlined using Iman, Helton, and Campbell as a
guideline. No mention was made with 'egard to the actual validation of the response surface,
the various diagnostic tools available for obtaining preliminary information for the construc-
tion of the surface, or data transformation. These issues are discussed in References [1,2].

V. Summary

The technique outlined by Iman, Helton, and Campbell appears to be a viable approach
for validating the BRLFCS. Additionally, the use of the nonparametric technique developed
by Baker and Taylor for stochastic models seems appropriate for performing a statistical vali-
dation of those tactical nodes for which experimental data exists,

A critique of these approachas, as well as suggested alternatives, are invited by the
author.
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A NONPARAMETRIC APPROACH
TO THE VALIDATION OF

STOCHASTIC SIMULATION MODELS

WILLIAM E. BAKER
MALCOLM S. TAYLOR

US ARMY BALLISTIC RESEARCH LABORATORY
ABERDEEN PROVING GROUND, MARYLAND

ABSTRACT

For three decades interest in simulation modeling and simulation languages has been
expanding, almost keeping pace with the phenomenal rate of growth of computer technology.
Lagging somewhat behind has been attention to the validation of the resulting simulation
models; that Li, the establishment of some level of confidence that the model does, in fact,
accurately mimic some real-world process. In the last fifteen years, research in validation
techniques has been substantially increased; and one general conclusion has been that
statistical tests are desirable in the validation process.

We have adapted a nonparametric statistical technique to validate a stochastic
simulation, and this procedure has subsequently been applied to a computer model currently
in use at the US Army Ballistic Research Laboratory. Monte-Carlo methods have provided
an indication of the power of this statistical test.

KEYWORDS: Hypothesis Testing, Ranking Procedures, Power of Test
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I. INTRODUCTION

For three decades interest in simulation modeling and simulation languages has been
expanding, almost keeping pace with the phenomenal rate of growth of computer technology.
Lagging somewhat behind has been the concern for the validation of the resulting simulation
models; that is, the establishment of some level of confidence that the model does, in fact,
accurately mimic some real-world process. In the last fifteen years, research in validation
techniques has been substantially increased; and a consensus of general conclusions has
formed:

1. validation is problem dependent - there is no one general validation technique,
mainly because the output from a model may be independent or correlated,
univariate or multivariate, stationary or dynamic, and so forth; in fact, the model
itself may be deterministic or stochastic,

2. in general, absolute validity Is nonexistent - once a particular technique has been
established, the model is usually validated only for a specific purpose and over a
specific range of values,

3. empirical data are necessary - in order to validate a model, some comparison of
output data with real-world data must be made; furthermore, these empirical
data must be independent of those used in construction of the model, and

4. statistical tests are desirable - of the many methods proposed for validating
simulation models, the use of statistical tests seems to be preferred, possibly
because of the ability to establish some level of confidence.

Nonparametric validation methods generally involve a procedure known as hypothesis
tcsting. The initial step is to state a null hypothesis, usually "the simulation model is valid."
'Then a level of confidence is established, often 95%; and a particular test statistic is chosen.
"Two different errors are present in hypothesis testing. The first is called a Type I error and
occurs when a true null hypothesis is rejected. If the level of confidence has been set at 95%,
then it follows that the probability of a Type I error is 5%. However, in simulation model
validation a Type IU error is the more Important to control; this occurs when a false null
hypothesis is accepted. No level of confidence is pre-established to guard against accepting
an invalid model; but, for any particular statistical test, a measure of the protection against
this error is given by the power of the test, equal to the probability of rejecting the null
hypothesis when it is false.

Unfortunately, there is a tradeoff between the two error types; as the level of confidence
is Increased (lower probability of a Type I error), the power of the test is decreased (higher
probability of a Type 1 error). This Implies that one way to increase the power of a test is to
decrease the level of confidence in it. There are, however, more satisfactory ways; and they
will be mentioned in the summary of this paper. Tbe important point to remember is that
when attempting to validate a simulation model using hypothesis testing, it is imperative that
the statistical test be a powerful one.
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II. I.TERATURE REVIEW

As the electronic computer became a more powerful tool, computer simulation became
a more viable method by which the behavior of a given process could be characterized. As
early as the 1950's, articles were being published about computer modeling of entire systems;
and soon after, specialized simulation languages were developed. The pioneers in this field
realized the need for some assurance that the simulation output would be consistent with the
empIrical data that were available. However, prior to 1967 there was very little %riten that
provided any explicit procedures which might be applied to determine the soundness of a
computer model. In that year severi' papers concerning this problem were published, and
two of them became a foundation upon which most subsequent efforts have been constructed.

In 1967, Fishman and KivitC provided definitions which differentiated the notions of
verification and validation, tenris which had previously been used interchangeably.
"Verification determines whether a model with a particular mathematical structure and data
base actually behaves as an experimenter assumes it does. Validation tests whether a
simulation model reasonably approximates a real system." Most individuals working in this
area today have subscribed to these definitions, although papers continue to be published
wlich do not discriminate between the two ideas. Figure 1, taken from a paper by Winter, et.
al. , is a Venn diagram illustrating the relationship betwsen verification, validation, and other
concepts within the field of computer simulation. Stone believed the word assessment "... is
preferable to validation which has a ring of excessive confidence abolt it." However, in this
paper we will continue to consider validation as defined by Van Horn, who expanded on the
previous definition by giving It a somewhat statistical flavor. "Validation ... is the process of
building an acceptable level of confidence that an inference about a simulated process Is a
correct or valid inference for the actual process."

Fishman, 0.8. and KMat, PJ., "Dgital Composter Simuladohi Statistial Considarutions,* Memorandum RM-5317-PR no Rand

Corporation, 1967.
SWinter, ELM., Wlaemliler, D.P., and Ujlhar, JK., V'rtlication and Validation of Engineering Simulations with Minimal Data,'

Procaedinm of the 1,976 Summer Computer Simulation Conference, 1976.

3 Stone, M., 'Crau.Validdnig Choice mnd Asaumment of Statistiral Prediction,' Journal of the Roial Statistical Societi Series B.36,1974.

4 Van Horn, IL, "Validation," The Doimi of Ck.mpuler Simulation Experiments, Duke Untwrlty Prea, 1969.
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MODEL • PROGRAM

FIGURE U RELATIONSHIPS DETW'EEN THE VARIOUS CONCEPTS OF A COMPUTER ,SIMM3LATION

The 3,ccond influential paper to appear in 1967 was by Naylor and Finger.3 In It they
proposed a three-stnge approach to validation of a computer slmulatio T!ls technique, or a
modified viýrslon of it, has been used by numerous authors. Law has augmented their
approach with specific suggestions for each of the three stages:

1. develop Njigh face-validity - insure that the simulation seems reasonable to those
people who are kiowledgeable in the area,

2. test the simulation assumptions . examine the data used in building the
simulation and empirically test the assumptions drawn from those data, and

3. compare simulation output data with empirical data - use tests, statistical if
possible, to determine a level of confidence in the simulation.

When attempting to validate existing models, the first two stages will often have already
been completed by the developer of the simulation leaving only the third stage, potentially the
most difficult.
5Naylor, T.H, and Finger, J.M,, 'Veriflcation of Computer Simulstion Models,' Managment Sience, Vol.14 No.2, 1967,

6 Law, ANM, Simulation Modelinn and Analys, Univerulty of Wisconsin, 1979.
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Not everyone subscribes to the three-stage approach to validation. However, there does
seem to be a general agreement that the third stage, comparing simulation output data with
empirical data, is crucial. Sometimes obtaining empirical data in Phe region of applicability is
very difficult, especially in engineering simulations. Winter, et. al. mention in that case, 'The
quality of the component models and the excellent knowledge of the random process along
with q systematic verification must be a substitute for validation." However, Fishman and
Kiviat' are firm in their statement that" ... if no numerical data exist for an actual system, it is
not possible to establish the quanqtative congruence of a model with reality." In attempting
to perform this third stage, Wright suggests that three questions be considered:

1. how do we intelligently compare simulation output data with empirical data,

2. how do we collect and exploit the empirical data used in our tests, and

3. how do we transform the results of these tests into a confidence in the computer
simulation?

Finally, Baird, et. al.5 warn that the empirical data used for comparison with the simulation
output data must be independent of those used in building the computer model; otherwise,
we have only verification of the simulation.

Tytulae has divided the many methods used for the data comparison into five general
categories:

1. judgemental comparison - this method seems to be the most widely used and
includes graphical analysis and the comparison of common properties such as the
mean and variance; it is easy to use and quite practical, but the impact of errors
in judgement is difficult to assess,

2. hypothesis testing - this method includes goodness-of-fit tests, analysis-of-
variance techniques, and nonparametrtk, ranking methods; sinct this will be the
category of interest in our report, the advantages and disadvantages will be
discussed In the succeeding section,

3. spectral analysis - since the output of many simulation models Is in the form of a
time series, this method is particularly useful; however, it is difficult to relate the
invalidity at a particular frequency to the overall simulation validity,

7 Wri k.D., 'Valldatina Dynamic Models: An Syaluation of Test of' Predlctw Poerr,'
Modlnla of the IM• Summor 5omputnr imulation Conference, 1972.

Daird, A•M, Ooldman, IL., Bryan, W.C., Holt, W.C, and Bairsa, P.M., "Verification and Validation of RF.E'.vironmental Models -

MethodoloV Overview,' oaling Aerospace Company, 1960,

9 "Ty•l•, T.P, 'A Method (or Validating Missile System Simulation Models,' Technical Report ,-78-11, U.S. Army Mlisilo Roasarch and
Development Command, 197M.
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4. sensitivity analysis - this method can determine a range of parameter values and
assumptions over which the simulation is valid, but it is usually difficult to analyze
the effects of the characteristics drifting outside this range, and

S. indices of performance - this method Is useful in ranking models; however, it is
impossible to pick a value for a given index which will always imply a valid
simulation.

Validation is a difficult process because, as Tytula9 points out, no single satisfactory
method exists. Most techniques are problem dependent; and, indeed, the output data of a
simulation may be indepqndent or correlated, univarlate or multivariate, stationary or
dynamic. In fact, Garrett' states that, "The critical dimension affecting the applicability of
various techniques is that of the deterninistic or stochastic nature of the output." OnlY a few
authors have attempted to provide a general validation technique - see Gilmour for an
example, Most have developed methods which apply to a select subset of simulation models;
and, even then, the simulation is often validated only for a particular purpose or over a
particular range of values. In that case, care must be taken not to apply the simulation model
outside the validated region.

UT. VALIDATION PROCEDURES

In this paper we will be examining hypothesis testing as a method for validating
stochastic computer simulation models. This type of procedure allows some level of
confidence to be attached to the results. When employing hypothesis testing, several
assumptions must usually be stated; but by using nonparametric ranking techniques we will
eliminate one major (and often urnjustifiable) assumption - that the data arise from a normal
distribution.

Sargentt2 notes that for hypothesis testing we generally assume a null hypothesis that the
simulation model is valid. Then by establishing a level of confidence for a particular
statistical test, we fix the probability of a Type I error in which we reject a valid model.
However, for simulation validation It is more important to minimize the probability of a Type
II error, that is, accepting an invalid model. The magnitude of the Type 11 error can be
determined by the power function of the statistical test where the power is the probability of
rejecting a false null hypothesis. For a fixed sample size there is a tradeoff between the two
error types, so that we can increase the power at the expense of the confidence level.
Unfortunately, the power can not be computed against an alternative hypothesis as general
as, "The simulation model is invalid"; and therefore, It must be examined against an array of
different specific alternative hypotheses. Nevertheless, we continue to search for powerful

10 nrtt, M., 'Saitlaeal Valildaton of Simulation Modils,* Frocsdng ot the 1974 Summer Comvut•l Simulation Confermnce, 1974.

O1lmour, P., 'A Geneual Validation Procedure trot Computer Simulation Models,' 7ie Austrullian Computer Joisnal, Vol. No.3,

1973.
12 Sarpn, k.., 'Doelopiki Sladstical and Cact.Rlak Procedure for Validation of Simulation Models,' U.S. Amy Research Office

Propos! Number 120I-M, 1910.
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statistical tests with justifiable assumptions which will still provide acceptable levels of
confidence.

Let X (x1, X2, ..., Xk) be a vector of inputs to a simulation model, and let y be an output
resulting from X. Then y may take on many values Is the case of a stochastic model. Let z be
the corresponding value from the real-world process given the same input vec.tor. In general,
y will not be equal to, z since X contains only a finite number of input variables; ostensively,
the most relevant ones. The purpose of the simulation model Is to mimic the real-world
process. Thus, in attempting to validate it, we compare each empirical value with the
corresponding model output generated under the same conditions; that is, the same values for
the vector X.

Suppose there exist N pairs of data (y , z1), (Y2, z2), . .. , (yN, z7 ) available for
comparison, where each pair corresponds to a diferent input vector ayd where each y, Is Itself
be a vector of values from a stochastic model. Reynolds and Deaton note that because each
of the pairs was generated under different conditions, it would be incorrect to pool the data
and proceed with the testing of our hypothesis. Rather, we must find a statistical procedure
which examines each pair individually and then allows for the combination of these results
into one overall test that provides reasonable power. With this as our goal, we propose to use
a nonparametric statistical procedures - a process which combines independent cases of the
Mann-Whitney test.

A stochastic model provides a set of outpi% values that, for each given set of input
values, occurs with a certain probability. Mihram" states that this "... probability ... serves as
a measure of our human Ignorance of the actual situation and Its implications." Generally, the
behavior of the system is too complicated to include all of the appropriate inputs in the
computer model. Even If it were possible, the return in accuracy provided by such
thoroughness may be small. Refinement of a computer model usually leads to stochastic
modeling; and because of the abilities of today's computers, the use of such modeling has
substantially increased.

1 2 M
Given M replications, output of the model becomes a set of values y , y ..., y for each

set of input values which can be compared with (in our case) a single corresponding empirical
value z. Recall that X is a vector of most, but not all, of the relevant input variables. Then z,
given the value of X, Is a random variable reflecting the random error due to the exclusion of
certain factors from X. Also y, of course, is a random variable since the simulation model is
stochastic. We would like to show that F(yIX), the conditional distribution function of y, Is
equal to G(zIX), the conditional distribution function of z for all - oc < y, z < co and for all
X

13 Rynolda, M.X., and Deaton, ML, "Comparlsou of Some Tests for Validation of Sto uatic Silmulation Models,'

Commun, Statist - Simula. Computa, Vol.11 No.6, 1982.
14 Mlhram, OA., Simulation: Statistical Foundations and Mathodolos, Academic Pres, Inc., 1972.
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Considering N different Niput sets, the 1vailable gata consist of N observations
(Y1I' Yl, I" ..IYI Zl)1 (Yl Y20 "'0 Y2 , Z2), * '" (Y' Y.'."" YNi ZN) of multivariate random
variables, where the 's fobany given observation sTare a common distribution. Mihram'"
suggests ranking Y, , y, Yj I z, for each i; if the model is valid, we would expect the z, to fall
somewhere in the middle of such a ranking. This is the initial step in a procedure known as
the Mann-Whitney test, a particular case in which one of the random variables, namely z,, has
a sample size of one. Since we are dealing with N observations, we need a method by which
we can combine indepepjdent cases of the Mann-Whitney test; such a method hN been
proposed by Van Elteren and referenced in a very clear example by Reynolds, et.al.,".

The Mann-Whitney test is a hypothesis test involving samples from two distributions that
tsts2 for quality of the distributions. For each input set X a sample of M output sets
y , y , ..., y is obtained from the computer simulation, and the empirical observation z
provides another sample of size one. The following three assumptions are made:

1) both samples are random samples from their respective populations,

2) in addition to independence within each sample, there is mutual independence
between the two samples, and

3) the measurement scale is at least ordinal.

The third assumption means that for any two observations on the random variable we can
distinguish which is larger and which Is smaller.

The null hypothesis is that F(yjX) * G(zIX) for a given input set X. When we combine
N of these tests, in the manner suggested by Van Elteren, we have the null hypothesis of
F(yjX) - G(zIX) for all -co < y, z < 0o and for all X, wqch we can interpret as, 'The
simulation model is valid." Let R1 be the rank of z1 in the e observation (Y1, Y1, 2", YM ,

thus, R, is an integer between 1 and M + 1. Then a test statistic T is defined as the sum of

the Ri's over all N observations; that is, T a E R1. Very high or very low values of T will

cause req.ctlon of the null hypothesis. The theory behind the Mann-Whi ney test is given in
Conover , and the combination of such tests is explained by Van Elteren".

A fourth assumption is usually made, that both samples consist of random variables
from continuous distributions. This is to assure that there will be no zeros and, more
Importantly, no ties. However, for this test, a moderate number of ties is tolerable; and they
are handled by assigning each of the tied values the average of the ranks normally due them.

Van Etlran,P., *On the Combination of Independent Two Sample Tests of Wilcomn,'

Bulletin do 'lnstitute International do Statistlque, 37, 1960.
16 Reynolds, M A.., Burkhart, HREH, and Daniels, R., Prmcedure for Statistical Validation of Stochutic SCmulation Models,'

Point 5iencu, Vol.27 No., 1981.
17Concvr, WJ., Practical Nonparsmatric Statistics, John Wiley & Sons, Inc., 1971.
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As mentioned earlier, a misuse of hypothesis testing as a method of simulation
valdation occurs when too little concern Is shown for the power of the test. The power is the
probability of rejecting an Invalid model, and we would like this probability to be as close to
one as possible. Unfortunately, the power can be calculated only for specific alternative
hypotheses. In order to generate power curves for this combination of Mann-Whitney tests, it
is convenient to make one additional, albeit restrictive, assumption; namely, the distribution
of the y1's Is the same for each vector of input values, and similarly for the distribution of the
z,'s. Although it would be preferable to avoid this assumption, it is necessary in order to test
against specific alternative hypotheses - in this case, a shift in the mean.

Figure 2 shows some power curves for this test when the underlying distributions are
normal and the mean of the distribution of the zA's varies from zero. Recall that a true null
hypothesis would indicate that the means of both F and 0 tend to be equal to zero. These
curves were generated using a Monte-Carlo procedure which incorporated 10,000
replications. Note the increase in power as the number of observations increases. Figures 3-
5 display some power curves for other alternative hypotheses, each figure assuming a
different common distribution for F and 0 with a corresponding modification of the mean of
G. Notice when the abscissa is equal to zero (when the null hypothesis is true), the
probability of rejection Is 0.05 - the value chosen for the probability of a Type I error. The
faster the curve approaches one, the more powerful the test against that particular alternative
hypothesis. Although very narrow in their scope, these results do provide us with an
indication of the overall power of the test against a shift in location and allow us to determine
the extent to which the probability, of a Type II error might be reduced by an increase in
sample size. Reynolds and Deaton' 3 look at some test statistics similar to T designed to, be
more powerful against other alternative hypotheses.

IV. EXAMPLE

The Vulnerability Analysis for Surface Targets (VAST) model is a computer simulation
currently in use at the Ballistic Research Laboratory to evaluate tt effect of kinetic energy
projectiles or shaped-charge threats against a single surface target. It incorporates damage
from both the primary penetrator and any associated spall fragments; but currently it is
unable to handle damage resulting from blast, heat, and certain synergistic effects such as
ricochets. Furthermore, there is a variety of opinions, estimates, and decisions, all based on
the experience of the vulnerability analysts but generally providing vague and imprecise data,
which subsequently serve as input to the simulation. Nevertheless, results demonstrate
reasonable face validity, so an attempt at statistical validation of the model seems feasible.

A target description Is produced by a separate computer code using a combination of
geometric figures and, once generated, can be viewed from any orientation. After a viewing
angle has been established, a rectangular grid is superimposed over the target in the plane
orthogonal to that angle. From a (uniform) randomly-selected point within each grid cell, a

18 Hafer, T.F. and Hafer, A,S, wVulnerability Analysis for Surface Tarpte (VAS7): An Internal Point-.Burt Vulnerability Model,'

ARBRL-TR4.02.54, US. Army Ballistic Rleaarh Laborstory, 1979.
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ray is traced through the target; and a Est Is constructed of all components encountered. If a
spall-producing component is encountered, spall rays are traced from that point of impact to
all critical components in the target. These rays represent spali fragments whose size, shape,
and velocity are chosen at random from specified distributions.

Along each individual ray, residual masses and velocities of the primary penetrator and
associated spall fragments are used to calculate the probability of incapacitation for each
critical component. These are then combined over all critical components and provide a loss
of function (LOF) for the particular cell, fun-her combined over all cells to provide a LOF for
the particular orientation, and finally combined over several orientations to provide an overall
LOF for the target.

Da:a were provided by vulnerability assessors who had estimated loss of function for a
particular surface target based on their inspection of actual damage from a particular round
of aummunition - in this case, the function evaluated was the mobility function. When
attempting to compare model output with this empirical data, it was first necessary to
determine the exact point of impact on the surface target during the live-fire exerdise. 'Then
the VAST model assumed that point of impact to be the origin of the ray representing the
primary penetrator. Damage due to that ray and its associated spall rays were then combined
to provide a LOF value which could be compared with the empohcal datum point. Therefore,
only one orientation was considered and, for that partictular orientation, a ray originating at a
specific point within only one cell was examined. Encountering a spall-producing component
still required a random selection of spall characteristics; and because execution time was
reduced, the model was run using thity replications - thd output data appear in Table 1. This
output from the thirty two replications was compared with the empirical data, using the
method proposed for stochastic simulations.

Table 2 contains the results. Recall that Ri is the rank of z, in the eh observation22 M teR c h ulyos o(y•,, ..., y J, z9), and T is defined as the sum of he R.s. Under the null hypothesls of a
valid model, zt has the same distribution as Yj , Y ,,., Y" ; and therefore, Rt is uniformly
distributed over the values 1, 2, ..., M + 1. Lehmann shows how to establish critical values
against which the test statistic can be evaluated. Modifying his results by incorporating the
number of tied observations, we can calculate the expectation of the test statistic,

ET M - [N(N( + 2)], (1)
2

and the variance of the test statistic,

1 I N, N
Var[T] = - [N M (M + 2)] - -[rE (d'- d)], (2)

12 12 [M + 1] 1

where N is the number of observations, M is the number of replications of the model, and d
represents the number of tied values for the jh tie in the ih observation with n, different ties
in the ith observation. Then T - (T - E M)/v'V-ij will have approximately a standard

19 LsAhmann, E.., Nonpammect ;: Statitcal Methods aned on Ranks, Holden-Day, Inc., 19M.
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TABLE 2. HYPOTHESIS TEST
Rank within

Shot Number Empirical Value Model Values
43 .734 16
44 145 11
45 1.000 16
46 1.000 16
47 .100 8
48 .900 27
49 .930 31
50 1.000 16
51 .145 1
52 1.000 16
53 .668 27
54 1.000 16
55 1.000 31
56 .905 31
57 .550 11
58 1.000 22.5
59 1.000 24.5
60 .050 1
62 1.000 16.5
64 .100 13.5
65 1.000 16
66 .668 6
67 .953 7.5
68 1.000 31
69 1.000 16
70 1.000 24
71 1.000 24.5
72 1.000 30
73 1.000 16
74 .905 30
75 .668 15
76 LOOO 16

SE Rank.s 584

Critical T-Values (a - 0.05) a 435 (lower), 589 (upper)

Critical T-Values (a - 0.10) - 447 (lower), 577 (upper)
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normal distribution. For our example we have 32 observations, 30 replications, and 51
instances of tied values with varying numbers of ties; in this case E [T] - 512 and
Var Pi a 1521. We can calculate critical values by evaluating the equation T - 39; + 512,
where z is the a/2 percentile of the standard normal distribution. As shown at the bottom of
Table 2, there is insufficient evidence to reject the null hypothesis at an a-level of 0.05;
however, at an .a-level of 0.10, the null hypothesis would be rejected.

Since the null hypothesis could not be rejected at an a-level of 0.05, we must be
concerned with the possibility of a Type It error; that is, accepting an Invalid model. Figures
2-5 demonstrate the power of these tests against an alternative consisting of a shift in the
mean. Figure 3 shows that the power of this test is very good if F (the distribution of the
model output) and 0 (the distribution of the empirical data) are both uniform. However, as
seen in Figure 4, if F and 0 are both Cauchy, then the power of the test is rather poor.

Reynolds and Deatont 3 have proposed other test statistics more powerful against
different alternatives; but for the loss of function data where empirical results that are close
to the value one tend to be assigned that value, a shift in the mean seems to be an appropriate
alternative hypothesis, Since the power against this particular alternative is fairly good
overall, our confidence in the hypothesis tests tends to increase. However, we would like to
be able to make these tests and other tests still more powerful and, in the future, will be
exploring methods to accomplish this.

V. SUMMARY

When referring to computer simulation models, a few authors continue to use the words
verification and validation interchangeably; however, most distinguish between the two terms.
Verification of a computer model assures that the simulation Is behaving as the modeler
intends, while validation assures that the simulation is behaving as the real world does.
Verification is the process of debugging a computer program; validation is making it
consistent with reality.

Prior to 1967 very little was written concerning the validation of simulations; but much
has appeared since then, and there has been general agreement on several points- the most
important being that to validate a computer simulation model, empirical observations are
necessary and statistical tests are desirable. All validation techniques can be placed into one
of five categories: judgemental comparisons, hypothesis testing, spectral analysis, sensitivity
analysis, and indices of performance.

Nonparametric ranking techniques are one class of statistical hypothesis tests. We have
advocated a combination of independent Mann-Whitney tests as a validation procedure for
stochastic simulation models. This is a statistical test which assesses empirical data to provide
a certain level of confidence in the computer model. The main disadvantage is the same as
that of all hypothesis testing techniques; namely, their concern for protecting against Type I
errors, sometimes at the expense of Type 11 errors. A Type I error results in rejecting a valid
simulation model - unfortunate, but not as potentially dangerous as accepting an invalid
simulation model, which is known as a Type II error. For any particular test we can get an
indication of the probability of a Type II error by generating a series of curves that will allow
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us to examine the power of the test against various alternatives.

Power is defined as the probability of rejecting a false null hypothesis, and we would like
this value to be as close to one as possible. For our advocated test we have evaluated the
power for some specific alternative hypotheses by incorporating a Monte-Carlo procedure
into a computer program, which allowed us to perform thousands of replications. Each
replication represents a case in which the alternative hypothesis was true, and we determined
whether or not the test rejected the null hypothesis. Obviously, we can not compute power
against an alternative hypothesis as general as, "Tbe simulation model is invalid." However,
In being more specific we are forced to examine an array of different alternative hypotheses;
and while a test may be powerful against a subset of these alternatives (such as a shift in the
mean of a distribution), it might be less so against others. The most we can hope for Is
reasonable power against alternatives important to a particular investigation. The
combination of independent Mann-Whitney tests appears to have reasonable power against a
shift in the mean, but we would like to be able to increase it.

For any given alternative hypothesis there are several ways of increasing the power. One
such way can be seen in Figures 2-5 - increasing the number of observations. Another way is
to reduce the level of confidence in the test itself; that is, allow the probability of a Type I
error to increase. Because of the importance in this area of computer simulation validation,
we hope to develop other ways to make these tests more powerful against a wide range of
alternatives while still permitting them to provide acceptable levels of confidence in their
results.
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SMALL SAMPLE TESTS IN SUPPORT OF COMBAT MODELING

EUGENE DUTOIT
U.S. ARMY INFANTRY SCHOOL

FORT BENNING, GEORGIA

ABSTRACTS THIS HANDOUT/REPORT HAS BEEN PREPARED FOR THE CONVENIENCE
OF THE ANALYST WHO HAS TO EXAMINE THE RESULTS OF FORCE-ON FORCE
COMBAT MODELING. THESE TESTS HAVE EXACT QUANTILE DECISION CRITERIA
FOR SMALL SAMPLE DATA SETS. THIS IS THE USUAL SITUATION FOR LARGE,
COMPLEXMANPOWER RESOURCE INTENSIVE AND TIME CONSUMING FORCE-ON-"
FORCE MODELS. HOPEFULLY THIS APPLICATION PAPER WILL PROVIDE A REF-
ERANCE THAT WILL GIVE SOME OF THE COMMON (AND EVENTUALLY THE UNCOMMON)
STATISTICAL DECISION CRITERIA APPROPRIATE FOR SMALL SAMPLES. POST-
HOC/MULTIPLE COMPARISON TECHNIQUES WILL BE PROVIDED WHERE AVAIL-
ABLE. THE HANDOUT IS LENGTHY ( 30 PAGES ) AND NOT APPROPRIATE FOR
PUBLICATION IN THE CONFERENCE PROCEEDINGS. IF YOU WANT A COPY OF
THE HANDOUT PLEASE CALL OR WRITE:

GENE DUTOIT
AV 835-3165/3166
COMM (404) 545-3165/3166

COMMANDANT
U.S. ARMY INFANTRY SCHOOL
ATTNU ATSH-CD-CS-OR (DUTOIT)

FORT BENNING. GA 31905-5400
REQUEST THE USERS OF THIS PRELIMINARY COMPILATION PROVIDE FEED-

BACK. ARE THE RANGES OF THE VARIABLES (TREATMENTSREPLICATIONSBLOCKS,
ETC. SUFFICIENT TO MEET YOUR NEEDS? WHAT OTHER TESTS AND PROCEDURES
WOULD YOU LIKE TO ADD TO THIS INITIAL LIST?
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REPLICATIONS3
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3, 4, 52, [ -= .05, .10, .153
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B3. FOST-HOC, TREATMENT VS CONTROL TWO-SIDED [K = 2
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C, ORDERED ALTERNATIVES CK: a 7$ 4, ,0., 6), EN 2, 71$, ,,,
72, Ea * .05)

3 T.E.STS FOR DISTRIBUTIONS EK a TREATMENTS, N m REPLICATIONS]
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& flESH APP~lAt TO etH rWIna3~r l~oamtnm FUCLtDIm VTAEALI VAlIANCE

5. II. 515811G05

TNTRODUCION The calculation of variability for our procurement problem

variable is of the utmost importance to the Navy supply system. After all,

it is pivotal in setting safety level. It appears some of our best savants

have taken a crack at this and the history seems to point out that one should

distinguish among the folloving:

models

Mathematical Statistics

Approximations

A change in any one of these may, and apparently does, affect tho variance

calculation.

This now approach avoids the problems others have =n into.

In the appendices are fundamental formulae, a careful statistical analy.

sis to be hooeded and a history of those attempts to solvo this problem.

. Fi'Lrst, lot us look at a simple, but typical, constant siLtua

tion. Suppose:

L - leadtime - 5 quarters

TAT - tur-.around-time - 2 quarcerb

D - quarterly demand - 4 units

A - regenerations per quarter - 2 units

Then our net Z - procurement In a leadtimo Is:

Z - (L)(D) - (L)(3) + (3)(TAT) or

- D(TAT) (D-2)(L-TAT)

-20 • 10 + 4÷- I5+.6 - 14
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Here is a picture drawn by CDR L. Atkinson:

Let's look at a similar situation where L, TAT, and D are the same but B Is

increased to 3. Then Z - 20 * 15+ 6 - 8 + 3 - 11.

A similar deterministic portrayal vas given by CDR T. Bunker as follows:

0 D

____I

L

These mnemuiia heuristic diagrams are fine if used properly to set up the

relevant indeterministLa expreesLons.

•L.A• liZ• Z. Lot r1 - recovery rate and r, - repair rate so that

r1r 2 Is the percentage (decimal equivalent) of replenishment, and hence,

I-rzrt - attrition rate.

From the just discussed and pictured process (model) we can write the

256



procurement problem variable as:

Z - Z 2- + Z

where

LZa- ]•D

i-i

L
Z2 r1 rt I D

L-1

T
Zo- rI2 DL

i-1

The variance of Z is

z M azI a + z ÷ 2 COy (zz) + 2 coy (zVZ) . 2 COy (ZaZ ,z)

First Io us comapute the three variances:

B(Z. IL) - t.O V(3(Z JL)) -44
I ~ ~ s I Po)r- i

V(Z IL) - K(V(Z1 L)) -

Obviously,, since Z - a eonstant timeS Z

VAR ZS -- r• 3a aL a "

Also, since Z3 ts the sam as ZI except for T replacing L, and has the same

constant multiplier as Za,

VAR Z. a a + a a
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r-L L

-, rt.VAI [ E Di]

Netthe 2 C.OV (Zz 3) - 2 CO. D, itf D EL

- i -I.

-2 r I r d

rL T
The 2 COV (Z1 ,Z3) -2 COV I D LIt r D11

fL 0)(T \

Assuming L and T are independent, we $at the above to be:

(0M a + I~

So the 2 COY (21.0%) becomes:

2 r rarr (OLP'rOD + PD) - eP

-2 r r ~ aW'U

The third covariance term follows easily •trom the Above and ve have:
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2 COV (ZZ)I 2 2 r3a 3 a ~L

So, combining all six terms we get:

VA S24.'2 2 2 2

+ r s byS a a

12 r 0 rD+

+ 2 rr (,e 44
+2 ,,. ,(PT(W. +ft, -+W4,)

-2 2 a 3

I! -,,,,,ALPT( + OD) - ,Pe,.ST

'tD OKIu2

2+ 2 22

-+2 ,tics [peel)

259



rr2 2 +221
- -2 ) [PD

22 2 2 2
+ rIr a(Pa... + PeaI

o2

+ 2 rr (I r ) [I Ia I.Ir U 21

This last formula is a model builder's dream. It has highly desirable

properties. First, note the coefficients add up to unity,

(l-r r 2 ) + 2 rr, (I- rr) + r2 Z
12 1)2) 1 2

2
-[(-rIr 2  + (r r2 )J -I

So they may be considered weights attaching importance to the factors they

multiply. Next, numerical values for the various factors are easily avail-

able and anyone can easily calculate the total expression.

Then it has sort of a group symetry in that it is invariant under the

transformation sending L to T, T to L and rI r to I - rIr 2 and vice versa.

Molecular chemists and physicists go into ecstasy over such formulas as they

say it shows strength.

Each term has meaningful sense as you'read it. There is a fraction of

the variance of leadtime demand, a fraction of the variance of turn-around-

time demand, and an interaction term to make up the rest.

Let's say rI r - .9 which I am told is not unrealistic. We get back into

service 90% of what we bought after repairing. Then 1 - r I- .1 and our

coefficients become:
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.01 on variance of leadtim. demand

.81. ov variance of turn-around.time demand

.18 on the interaction of the above two

It makes sense to put most of your weight on that which is most active, The

interaction term can be written as

2 (r,( CA D) * (I - rs)(gel))

which is like an association index.

flNALI. Process should alvays come first, like in Management Science

policy should precede procedure, I eoe much thanks to J, Boyarski who,

after suffering with the historical presentation* as I went through them,

impressed me with the Karkov closed loop process we have here and stressed

the systems engineering aspects. I finally gave up on fiddling with what

everybody else had done and started from scratch. It looks like it paid off.

Finally we see this is a true generalization of the consumable model in

that if r rI - 0; L.e., no repairables, we find the correct expression for a

consumable.
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Certain random variable expressions arise in the computations for the

variance of the procurement problem variable regardless of the model. Here

we Sive them and their variances,

1. In assuming the quarterly demands are ,,i.d we compute the variance

of the random variable sum of them an

L a a 8
V IL -1 I• I iMODL'

Otherwise, we 'would have more complications. For example, if we assumed that

successive demands had correlation p, then an additional term of the form

woAld appear, thereby increasing the variance. We know the variance of a

mean of correlated variables cannot be driven down by increasing sample size.

As it is, we agre assuming L and D are independent.

2. For any two random variables x and y:

If x and y are independent, this reduces to

19 (z -y) - 0 .7 - Pp

3. For any two random variables x and y:

S.(37O - a (W.y))3

pa . 2 (2)

coy ((s1y)) ()
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For jointly normal vith zero means MO (xa ya) - 2 [2(my)]a.

If x and y are independent this reduces to

a -j*U +a a a +e (4)
17X K IY 751yP 1KOY

4. COV (kx,x) - k (VAI(L)) where k is a constant.

5. COY (3, a-z) - -a).

6, In the UICI formulation we assume the number of units demanded each

time period (L) is a random variable DL which is described by a fixed, known

frequency distribution and which is not autocorrelated. Also, it's assumed

the return-from-repair each time period (L) is a random variable R which is

described by a fixed, known frequency distribution and which depends on (Ls

correlated to) exactly one observacion of demand, namely, the demand that

occurred a set turn'around.tims (!) prior; i.e., Di.!. We run into the co-

variance of D and R L+T. To simplify it we further assume that:

-i ?" 3PL-T

where P Lis the return rate of the (i-T)-th period times the survival rate

of the i h period. Then we can write:

COY (Di, 11+,) - COY (Di. 1iD) - I (D L DL) - I (Di) I (liDs.)

I3 (lr) SlD) . (Pi) [I)J2

where we further assumed P and D are independent so that

3(I) - X(P) 1(D)
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7. NASA •sie the following approximati.onh for va
xy:

'Yye

or
I a8 a a

'zy +yz ZIP+ ve y M +
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There is an essential point to be made regardless of the model used. 'e

will illustrate it by considering three different expressions which are a&.

gebraLcally equivalent in deterministic algebra and also which have the same

first moments when we consider the symbols to be random variables and swLtch

to the algSebra of indeteruinism. However, the second moments are not neces.

sarily equal and, beves, neither are the variances calculated therefrom.

First consider the elementary algebra identity

I - Z O (-)

Now consider the rel.ated-in-torm random variable expression

X, . a& (2)

wheir, Xa Ind XI aare L.L.d. The mean of this random variable expression is 0,

and so it appears thars is no need to distinguish betveen (1) and (2). But

the variance of (2) is 2a while the variance of a constant like 0 is 0.

Another simple example comae from taking R + X - 2X and then makinS the

a 2variables random variables which leads to the contradiction 2a~ - 4

Why all this very elementary talk? Well., conusidr:

7 4
. D 1 O. Di (3)

Then the varlance of tbis is

VAR( ai L D~ 1 0A( D + VAI( D)

L- L) L)

a + 4e - liff (4)
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while if we use deterministic algebra first, viz,

74 7£ D•. E. D1 . ]:o
i-I. ii i-s

Ve $at

Vi (Li 1)) (5)

So lot us nov conider three different expressions that exist in different

presentations of ou'r procurement problem variable. These three expressions

are algebraically equivalent in detertmintitic algbra, Here they are:

L T L-T L
I Di. E Dim E Di+0Ti E

L-I L-I I-1, L-T+,

(A) (b) (G)

It is easily aeen chat if we suddenly make Dil L and T random variables and

any two Di, D are iid and L and D1 are independent with E > T, then the

mean of (a), (b) and (a) iL

(E - 1)5

But the vartames differl Let us develop the variance of (a).

L T

Lat T a 0 D .1 0

INTL, -ft TL p - (L"- T)#1

VA. V JR 4"•(.Y,,,•L)l, '(L.T) (6)

Novw VAR (Y1IlL,T) - to" To (7)

assuming the DLs are i.i.d.
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Then 3(VAIR (T.ItL,T) - DI + Tv;

,' The variance of Y La the sun of (6) and (8),

VAt (Y '(L)) + (ft+ja,) go

f we fusther auame L and T are Independent, then

VAR (To) ft (444) + L'(

L-T
How about (b). L:t - -.Z ULT

- 2I -~ *3 ~aVA - (L-T) vi L+5 + ' 
(0)

Finally the variance of (a), and we call Y4 - (a), is

mAT*-O; be,.+i' (T+ l)wo+5 Doi)

(T)

The reader vwill sttee several similarities and dissimilarities. Before

that, I call actentlon to the quection mark under the plus sip •n (11), Some

places I have found a minua sips herel The vatciances for (a) and (a) ar6

similar, the difference being minor and depending on integer versus contin-

utty for T. Or, the other hand, the variance of (b) not only h" a factor

(L.T) on one tern a opposed to (ZiT) in (a) and (a), but it also has on In-
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voLved variance term which, heretofore, has been mysteriously handled. I refer

to aDT.

The point Ls that (a) and its variance are the correct approach.
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Sack as far as 1963 when the PARS were being wrLtten (PAR I - Application

D, Operation 6 (Level. Computations for Repairable.)) we find the formula for

the variance of attrition demand given to be

62 2 2 . 2 CO r D (2.)

where

D - quarterly demand

r - aveoage repair survival rate

I - carcass return rate

6r5 is broken down into the correct three terms, based on Independence

of r and B, namely,

;& a a 82&A+ 6i + i (2)

(See APPDI•X A - formula (4)).

Further, assuming (a) that r is independent of B and D and (b) that the

R7! regeneracions for a given quarter are a function of demand from a prior

quarter, the expression (1) reduces to

#• "as . 2 WCV (3,1))

and quickly Ii added

COY (5,0) -

Also, under the assumptions:
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(a) Demand during turn-around-.time is independent of attrition during

lendtime less turn.around-time;

(b) Leadtimo and turn.around-time are independent,

the covariance of demand during procurement turn.around-time with attrition

during leadtime less turn-around-time is liven to be

. OV (DT,(D-rB)(L-T) - -.V

Finally, the variance (VL) of the procurement problem variable is given to be

VI -Win + a(D-Wr)(L.T) + 2 COV [DT, (D-uu)(L-T).
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it was in the aid-60s when we vere writing the PARS that Peter Zahna

turned his attention to accounting for attrition during turn-around-time,

He agreed with the others that we estimate from past history recovery rats

and repair rate, say rI and ra and then R - I - rIra is the attrition rate.

Also, wea 4 assumed that L > T and that demands are mutually independent.

Initially ve said the procurement problem variable Z is to account for a~l

of the demands during a ledtime less the regenerations during that time, It

vas computed by accounting for the demands during turn-around-time T and add-

inS the attritions dt~ring ladtime less turn-around-time. Zehn& objected on

the grounds that this implicitly assumed that regenerations for a given lead.

time are a function of demands during the leadtim less turn-around-tim.'

He proposed vhat he said was mors realistic and computationally simpler.

He suggested we eswme that regeneiations are a function of the demands that

occur during turn-around-time T. These regenerations are available for issue

during the leadtime L and occur at a rate r1W2. Hence, they can be expressed

as the random variable

T
rr D (1)

So the precurement problem variable can be written

L T T L
Z D L -r I a1  0 L~ W R 1 ,+i (2)
i-I. iI. i I i..T+l

Using our usual formula for the variance of the random sum of random

demands, Zahna obtained:
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a 2a a a a a 2M I +(3)
z D + PD ffL +6

"6D q, - (.l*')OTI + + (4 * (1+e) (4)

In ou~r ugu.al notation for sample estimataes thi.s gives,

A

Let's hold up here a minute and go back and rewrite (2) as:

T L TZ - R Di + hD * Di 6i-i i-i i-I (.

Then

VAR Z vi [a 1 . ,] + VAR D ,] + VA [ D] (7)

T L
+2COV [Z I DL, I- D I (8)

11-1 '-I

L 

T
S2 Of[ I D e1. Z DII (10)

Let us compute first the three covariancee.

[ TL
a-1 

i-l
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rT L
I [ I x I1 oi .D rOA (Be)IL LWI LMD

T
-ILVAA E DL

+ +s (9a)

coV[ L TD]
LEI LEI-

rL T
R IL I O (2.04)

Nov let's combine (8), (9), And (210) as (6) *(9) *(1.0).

L Ea I DL X L E I'IASA)42 DL x E IDL]+ Le

r T L 1 23
IL(RL-) I Dg, x D1 0L +C.I-I)AeLA4 OusD -%e6TL II~p

'0

-T

where ve assumed T *An L independent.
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So altogether, by correct mathematical statistics, we obtain

VA Z 22 ( 2Y aa a2 2 22a

VAIZ-l (i' a a DL12 Da &?a
21 4 |

-Ae +~ -2341) AVDu + I$

Separating this into two terms, one on a and on* on p, as Zehn& did,

yields

va z, -Z (,i .2,+1 ,T + p. (.' + let, +(I-n2I4lKI

- ( + (.-),,I)I.O , + [ei+ V L +ýI

We note this is very similar to Z•hna's result (4). The difference lies

in the coefficients

(1-l) vs 1-ie

and

So we see that Zabmas coefficienc on is a negative and, hence, makes

a smaller coefficient. On the other hind, his coefficient on is larger

by 2R.

In 1964, J. W. Ptichard of IUSANA Navy Headquarters (today NAVSUP) pre-

sented a paper entitled *Iventeory Model for Repairable Items . Theory and

Practices."
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He let Za - DL - AL + ST - DT + (D0-)(L-T) be the random variable of the

amount of naterial demanded in a leadtime by users and by the repair process,

but not satisfied by the repair process. The variance of ZZ becomes:

YAR 4j Z'(D4im- +,) + 2 CYV (DT, (D-B)(L-T)i

The last tuia, which is -2.e [D(D-5)], is needed because of the obvious corre-

lation between gross demand during a turn-around-tine and the net demand to be

met from purchase during that portion of the procurement leadtiae in excess of

the turn- around- time,

The other two terms in the expression for VAR jZa 1 can be expanded into

the form for sum over a random interval of random demands, viz

eT- Te + ( -) [

S(l)(L-T) -(lTY) + + I MY7 (DA)

+ (.I)s [ .a

The covarliance term 2 OV (DO) is approximately equal to

-2 + D

So we on* up with

V" Z. - ?A (;)A'*a 4 (E-1) 1@3_ +a- 2j+'uA]

aO T D a D

+ (D.5) (,+ 2 ,(S).
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Note that A is used here for rB in the PARS example. This smae approach and

results were used by J. Schuolker.

Hers is a development by CDR Keith Lippert without the covariance term:

VAR (DXn + (D-rI')(L-T)j - V(DXT) + V(D-VA3)(L-T)

* *Te + (Dr.5')? + CL'?). •:
51 -- -D 4" a a -

" T +TD + Dr' L-T +(Ti D- r3

"- T. + Too + (D-WI (e4+4) + (L-T) D. rs

+. a5 assuming independence.

caw J ~ (~y 3 )f(r)f(lI)dIzdb

D- r S

. 6(i''a . 2zI' lp, + i ,)f(a)f(r)drd5

T V13 33) f(r)da? - rr% I' ar. r)dr 4.J a,,f(r)dr

-v + 4i. 4," ) -•,e s

qr~l4 + + trl (this follovs from our APPFMIX A equation (3).

So in total for Z - procurement problem variable
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V(Z) - feD, + (Ci)'(4 + S) + (L,) IV.a) + a a a + a 4,3D r *,lA r

Compressingnl i Lnco simply 3, this becomes

-aa 3 ,;~aa a aDT + + + ao w lU, + "4 .Y)-9o + 63)
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LATIN HYPERCUBE SAMPLING:
A WAY OF SAVING COMPUTER RUNS

W. J. Conover
College of Business Administration

Texas Tech University
Lubbock, Texas 79424

A. When real-life situations are modeled using a computer
program, the computer program is frequently very large and takes a long time
to make each run, In order to got the most information from a limited number
of computer runs, latin hypercube sampling was invented. The wide-spread
usage of latin hypercube sampling attests to its value in producing precise
estimates of the output distribution parameters. In addition, a useful
method for inducing correlations among the input variables in simulations
is discussed.

1. TINTODUCTTOM . The advent of high-speed computers has opened new
doors for solving difficult real-world problems. Computer codes are written
to simulate the behavior of the real-world situation, and then the codes are
run repeatedly on the computer to estimate the outcome under various
different circumstances, where those circumstances are used as inputs to the
computer code, Unfortunately, these computer codes often become very complex
in an attempt to make the codes as realistic as possible, and as a result
they take so long to run on the computer that the number of runs is limited
by time and money constraints. Also, computer codes become more complex when
the number of different input variables increases.

Thus the following situation often arises. A complex computer code is
written that mimics the real life situation as well as one can expect from
any computer code. It contains many, perhaps hundreds, input variables or
parameters that can be varied to represent different circumstances that
should be considered, and it takes so long to run on the computer that only
a few simulation runs (say 20 to 100) are possible due to time and money
constraints.

How is this possible? In everyone's mind there's the feeling that the
number of runs must be larger than the number of variables. However, that
notion comes from solving systems of linear equations, and does not apply
to computer runs, For example, one could simply choose a likely value for
each of the k input variables, and make a single computer run using these
values. Then one could use a different set of values for the input
variables, perhaps representing a possible undesirable scenario, and make
a second run on the coiwpoter. So k, the number of input variables, can be
much larger than a, the number of runs.

The question then becomes, how should the various values of the input
variables be selected so as to get the most information, in some sense, out
of a limited number of runs? One approach ie the deterministic approach,
which says to select particular sets of values of the input variables that
you, or someone else, want to examine for one reason or another. The output
of the computer code then applies to the scenarios represented by those sets

281



of input values. There are obvious advantages to this approach, but the main
disadvantage is that few, if any, probability statements can be made, and
often any kind of post-hoc analyslis is very limited.

A second approach is to use a monte carlo approach, and randomly select
values for each input variable, one value at a time, and do the same for all
input variables. This assumes that each input variable has a known
probability distribution so a random selection may be mad*. Then the output
is one random value of the output, By repeating the procedure several times,
several independent random observations are made on the output, and
estimates of the output probability distribution can be made. This method
is called random sampling. It allows for many different types of probability
statements on the output, or concerning the relative importance of the
various input variables.

A third approach, called latin hypercube sampling, is discusued in this
paper. It has been used for at least ton years by several national research
laboratories, notably Los Alamos National Laboratories and Sandia
Laboratories, It is used in at least 22 different countries for selecting
input variables in long-running computer codes, primarily for modeling
nuclear reactor behavior, and the behavior of deep underground nuclear waste
repositories. Inquiries regarding a computer code that facilitates its usage
should be addressed to Dr. Ronald L, Iman, Sandia Laboratories, Albuquerque,
(505)844-8834, who has gone out of his way in the past to make this program
available to prospective users.

The popularity of latin hyperoube sampling is due to its characteristic
-of having a relatively small variance, as compared with random sampling for
example, in the estimates of the output distribution. Thus the same types
of probability statements available from random sampling are also available
using latin hypercube sampling, but usually with much more precision.

2, IATIN HYPERCUBE SAMPLING. One characteristic of most computer-
coded models with many input variables is that some input variables are more
influential than others in affecting the outcome. We would concentrate our
attention on the more influential input variables, if only we knew which
ones they were. But that is often the purpose of the simulation, to find out
which input variables are the most influential on the outcome.

If we knew that the outcome was almost entirely dependent on one input
variable, say X1 , then we would almost certainly want to select values of
X1 that span its entire range. In this way we could see how the outcome
varies over the entire range of values of K1, and we would have a complete
picture of the model's behavior. If ve were allowed to make n runs on the
computer, we could divide the range of X1 into U intervals of equal length
and select one value from each interval ýor each run. Some of the intervals
may be very unlikely to experience in real life, however, and besides that,
what do we do if the range of X1 is infinite? So it makes more sense to
divide the range of X1 into n intervals of equal probability, rather than
of equal length, and randomly sample one value from each interval. Thus all
of the I1 values of X1 carry the same weliht, and no problem arises if the
range of Xl is infinite.
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The problem is that we don't know, before running the code, which
variable is the most important. Furthermore, in many situations there is
more than one output from the model, and while X1 may be the most important
input variable for output Y1 , say, another input variable X may be the most
influential input variable for another output Y2, say. Or If the output is
a function of time, one input variable may be the most influential one at
an early point in time, while another one may be the most influential one
at a later point in time, In fact this i.s the rule more than the exception.
How do we handle this situation?

One obvious solution is to treat both X1 and X2 with equal
consideration, Stratify over the entire range of XI to obtain the D values
of X1 as described above, and in a similar manner stratify over the entire
range of X2 to obtain the n values of K2 for the D computer runs, Then how
do we decide which values of X1 to pair with the values of X2 in the various
computer runs? The approach used in this section is simply to pair them in
a random manner, as variables would be paired in real life if they were
independent of each other. In the next section a method of pairing is
discussed, to achieve a desired correlation between X1 and X2 . But for now,
random pairing is used.

Of course it now becomes obviouai what to do if a third input variable
X3 is also important. Stratify over the entire range of X3 to get the D
input values for X3 , and do a random permutation of those D values to match
them with the (Xi, X2 ) pairs already established. A similar treatment can
be made of all of the input variables, In that way if one of them turns out
to be very important, it has been treated with importance by stratifying
over its entire range. If it turns out that one of the input variables is
of little or no importance in influencing the output, nothing is lost using
this procedure since all of the influential input variables are stratified
over their entire range. Including this unimportant variable neither aids
nor inhibits the amount of information obtained from the other variables.

Intuitively this seems like an efficient method for getting the most
information out of a limited number of computer runs, but how goad is it
really? In an attempt to answer this question several different sampling
plans were compared using real computer codes, by McKay, Conover and Beckman
(1979), Iman, Conover and Campbell (1980) and Iman and Conover (1980). In
all cases the output parameters were estimated with much more procision
using Latin hypercube sampling than with any of the other procedures
examLned, and the improvement was dramatic. This does not imply that there
are not better methods for selecting input variable, or that this same
drazAatic improvement will be evident for all types of computer codoe. It was
true for the codes we examined, when compared with random sampling and a
different form of stratified sampling.

One disadvantage of latin hypercube sampling is that even though the
estimates are very precise, no measure of the precision is available, as it
is when using random sampling. The solution to this problem lies in
replicating a latin hypercube sample several times. For example, if a total
of 100 runs is allowed on the computer, first use 10 runs, or 20 runs if you
prefer, for a latin hypercube sample, where each variable is stratified over
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10 (or 20) intervals. Then repeat the procedure for another 10 runs, again
stratifying over 10 intervals for each variable, but of course the
individual values are unlikely to be the same as before, and the random
matching of one variable with another is unlikely to be the same as before.
By repeating this procedure until the total number of runs is exhausted,
several independent estimates of the output are obtained, where each
estimat5 has the precision one can expect from latin hypercube sampling, and
the group of estimates together provide an estimate of that precision. This
variation of latin hypercube sampling is explored by Iman and Conover
(1980), and as one would expect some precision is lost by this combination
of latin hypercube sampling and random sampling, but the benefit is in
obtaining a measure of the precision in the form of a standard deviation of
the estimate. The new level of precision is somewhere between pure latin
hypercube sampling and pure random sampling.

3. CORRELATING THE INPUT IVAIABLES, Thus far it has been tacitly
assumed that the input variables are mutually independent, and therefore the
population correlation matrix is the identity matrix 1.

1 0 0 ... 0
0 1 0 ... 0

1 to 0 0 1 ,,.,

The sample correlation matrix, the matrix of sample correlation coefficients
representing the actual correlation of the selected input values for the
various input variables, will be close to 1, with differences due solely to
sampling variability.

Often the input variables in a computer code represent variables which
in real life are correlated. If the input variables in the computer code had
a sample correlation close to the real correlation between those variables,
the result would be a more realistic simulation, with more believable
results. How can we match the input variables so that the matching is no
longer random, but rather contrived to achieve a target correlation? The
method described in this section shows how to achieve a target rank
correlation, which may be the closest we can come to achieving a target
correlation due to the possibility of long-tailed input distributions where
outlying observations dominate the regular correlation coefficient, but have
minimal effect on the rank correlation coefficient. Recall, the rank
correlation coefficient, called Spearman's correlation coefficient, is just
the regular correlation coefficient computed on the ranks of the
observations. See Conover (1980) for a complete description of rank
correlation.

An example can help describe the concept. Suppose n - 15 runu are
authorized on a model with k - 6 input variables. Three of the input
variables are mutually independent, and the other three are highly
correlated. The population correlation matrix C looks like this.
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the estimate. The new level of precision is somewhere between pure latin
hypercube sampling and pure random sampling.

3. COfRElATING THE INPUT VARIABLES. Thus far it has been tacitly
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a sample correlation close to the real correlation between those variables,
the result would be a more realistic simulation, with more believable
results. How can we match the input variables so that the matchin5 is no
longer random, but rather contrived to achieve a target correlation? The
method described in this section shows how to achieve a target xank
correlation, which may be the closest we can come to achieving a target
correlation due to the possibility of long-tailed input distributions where
outlying observations dominate the regular correlation coefficient, but have
minimal effect on the rank correlation coefficient. Recall, the rank
correlation coefficient, called Spearman's correlation coefficlent, is Just
the regular correlation coefficient computed on the ranks of the
observations. See Conover (1980) for a complete description of rank
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An example can help describe the concept. Suppose n - 15 runs are
authorized on a model with k - 6 input variables. Three of the input
variables are mutually independent, and the other three are highly
correlated. The population correlation matrix C looks like this.
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Xl X2 X3 X4  X5  X6

X1 1 0 0 0 0 0]
X2 0 1 0 0 0 0

C- X3  0 1 1 0 0 0I
X4 0 ' 0 1 .75.70
15 0 0 0 .75 1 -.9S1
X6  0 0 0 .. 70 -. 95 I

Each input variablu has 15 values, obtained by using the stratification
procedure described for latin hypercube samples. If the 13 values for each
input variable are permuted randomly the sample correlation matrix might
look like this.

XI X2  X3 X4 X5 X6

Xl 1.00 .10 -. 47 -. 23 .26 .17
X2 .10 1.00 -. 31 .07 .48 -. 23

T - X3 -. 47 -. 31 1.00 .34 -. 20 .19
X4 -. 23 .07 .34 1.00 -. 04 -. 03
X .26 .48 -. 20 -. 04 1.00 .05
X6 .17 -. 23 .19 -. 03 .05 1.00

The matrix T shows how random correlations may differ from the target
value of zero, and sometimes the differunce is fairly large. In this case
the target correlations are given in the matrix C. How can one obtain
correlations, albeit rank correlations, close to the ones in C?

If the values of the input varLablei are permuted so that their
uxikLM agree with th. following rankings, then their rank correlation
coefficients will be given by the rank correlation matrix M, given below.

Run Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Xl 15 3 5 13 14 9 2 8 10 6 1 7 11 12 4

Ranks of X2 15 6 12 8 5 1 4 3 7 9 13 2 11 10 14
Variables X3 5 10 4 7 14 1 2 8 13 6 12 15 3 11 9

X4 2 1 15 10 11 8 9 6 12 3 13 5 14 7 4
X5 1 3 15 12 13 10 5 6 14 8 9 2 7 11 4
X6 15 13 1 2 7 8 11 12 3 6 4 10 9 5 14

Xl X2 X3 X4 X5 X6

Xl 1.00 .02 .05 .04 .22 -. 08
X2 .02 1.00 -. 06 .08 -. 01 -. 05

M - X3 A05 -. 06 1.00 -. 08 .05 -. 11
X4 .04 .08 -. 08 1.00 .73 -. 70
X5 .22 -. 01 .05 .73 1.00 -. 89
X6  -. 08 -. 0V -. 11 -. 70 -.89 1.00
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Note how cloce the raxk correlations are to the target correlations
&Iven above in the matrix C. Even the correlations aiming at the value zero
come much closer to zero then the random correlations in the matrix T. Thus
even if the input veriablos are independent, one may prefer to use this
procedure to obtain nearly orthogonal (in the sense of, ranks) input vectors,
rather than relyiug on random matching which may produce, by chance,
correlations quite far from the target values of zero, as shown in the
matrix T.

It is necessary for the number of runs n to be larger than the number
of variables ]a for which correlations are being designated, in order to use
this procedure. Note that k* may be less than the total number of variables
k.

One advantage of using the r-ank corrtilation coefficients becomes
apparent. The ranks, when paired as they are above, always result in the
rank correlation matrix I., no matter what the original numbers are, and
therefore no matter what the margina4 distributions might be, Thus this
method of inducing rank correlations is free of any distributional
assumptions regarding the input variables.

Although we are using this method of inducing correlations in
conjunction with latin hypercube samples, it is in no way tied to latin
hypercube sampling. It works equally well with random sampling, or any other
way of obtaining values for the input variables. All that is required is a
rearrangement of the input values so that their ranks agree with a
proscribed set of ranks, in order to obtain a rank correlation matrix close
to the target rank correlation matrix.

Of course the big question is, how does one obtain the prescribed sot
of rankings for any given rank correlation matrix, as given above for the
matrix 4? As you would expect, the method is not simple. It can be done by
hand, but the Sandia computer program is recommended for convenience, since
it takes the difficulty out of the procedure. For those who are not Afraid
of matrix manipulation, the procedure is as follows.

1. Start with any set of a numbers, called scores, where U is the
number of runs. We usually use normal scores, which are the i/(n+l)
quantiles from a standavd normal distribution, i - 1, ,. ,, n, which are
readily available from any table of the standard normal distribution
such as that in Conover (1980), Denote those scoros by a(l), , ,,,a(n).

2. Form a matrix R with k* columns in it, where each column contains
a random permutation of the n scores, and where k* represents the
number of input variables being correlated. Be sure all permutat'ions
are distinct.

3, Find the sample correlation matrix T of Rt. Note that T is the
regular correlation matrix, not the rank correlation matrix. However
it is a characteristic of normal scores, and normal random var,.ablos,
that regular correlation coefficients and rank correlation coefficients
era usually quite similar.
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4. Find a matrix Q such that QQ - T, where Q' denotes the transpose
of Q. Mathenaticians hare devised several methods for finding Q. The
one that we use is the Cholesky factorization scheme, which results in
a lower 'triangular matrix for Q.

5. Lot the Zg•g cor;relation matrix be denoted by C. Find a matrix P
suah that PP' - C. Asain. we use the Cholesky factorization scheme
because of its relative simplicity.

6. Find S - PQ'" and compute I RS'. The ranks of the matrix R* (one
S'coiwmmn at a time) are the ranks we are seeking. Any set of input
victors with the came ranks as R0 will have a rank correlation matrix
close in value to target correlation matrix C.

Why does this work? First, the regular sample correlation matrix of It
is C. This is a simple result that can be shown with a little matrix
algebra. Second, because we started with normal scores, the rnk correlation
coefficients of Rt are usually numerically close to the regular correlation
coefficients, given in 0. Therefore any matrix with the same ranks as
will have the same rank correlations asnR, which should be close to C.
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GRAPHICAL TOOLS FOR EXPERIMENT DESIGN

Russell R, Barton
School of Operations Research and Industrial Engineering

Cornell University
Ithaca, New York 14853

ABSTRACT

Graphical methods for designing experiments have been used since the inception of
statistical experiment design, yet this approach has received little recognition in the
lih'ature. This presentation surveys historical uses of graphical displays and shows how
graphical representations can clarify the difference between a bad design and a good one.
Some practical rules for generating new designs by graphical means are presented.

KEYWORDS: Experiment Design, Graphical Methods
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I. INTRODUCTION

How can graphical tools be used in the process of designing an experiment? First,
consider the steps involved in experiment design. One can think of this process as
composed of five steps, These must occur before any data are collected, and before
statistical analyses are performed. They are:

1, define the purpose of the experiment,
2, identify the independent, intermediate, dependent, and nuisance variables,
3, classify the variables as quantitative or qualitative, linear or nonlinear effect

(independent variables), and fixed or varied during the experiment (independent
variables),

4, using the above information, choose or create a design, and
5, validate the design.

This paper presents graphical methods for steps 2, 4, and 5 of this process. For step 2,
we will show Andrews and fishbone diagrams. Multidimensional point plots and a
variety of other techniques can be used in step 4. For step 5, we will discuss graphical
properties of good designs, and the importance of checking projections.

Because of the high graphical content of this presentation, the format of the following
paper is unconventional. Its form is more like that of an oral presentation, with figures
placed on the left side of each page, and the accompanying text on the right (opposite
each figure) 1. This allows approximately sixty figures to be discussed in thirty pages,
which might otherwise have taken twice the space.

1 The following pages come from a session entitled "Practical Graphical Techniques for the Dt5.mg;i and

Analysis of Experiments" presented by James FiUlben, Gerald Hahn, and this author at the 1987 American
Statistical Association Winter Conference in Orlando, Florida. These figrues are more complete than the
Army Design of Experiments presentation in most ways, although some recent material was presented in
Monterey that is missing here.
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GRAPHICAL DESIGN OF EXPERIMENTS -- R. BARTQ'N-'

VIE WGRAPH TEXT

Pracica Grahicl Tet"I OVERVIEW OF A THREE PART TALK

Dein n Aufaior Eth erteu ABOUT 20 MINUTES PER S ECTION
Desin ad A alyis o Ex eol ard BEGIN W ITH GRAPHICAL MFT'i IODS

FOR DES IGN--NOT JU ST FOR VI ý*' \ING
DESIGNS, BUT FOR DESICI NIN(1

Russell R, Bairlon DESIGNS.
James J. FlIiIih~rn rr~ m
Gerald J. Hahn WHY GRAPHICAL NIETI IODS?

>= better tinderswcIding of cics' q1
mae> easy to genernte n new destial j~

>providcs a layout to nin the desl gn 1mm

PART 11: GRAPHICAL DOX *START FROM A BROAD CONTEXT:

PART 2.: GRAPHICAL ANALYSIS WHAT ARE THE EVENTS LEADING
PART 3: RECENT APPLICATIONS TO THE NEED FOR AN EXPERIMENT?

2* Why is the experiment necessary?

*What is known about the system that is being
V1 EMPHASIZE THAT THE SEL ECTION OF THE MATRIX OF investigated?

EXPERIMENTAL ~ ~ ~ ~ PONSRPEENSOL H hat ame the KEY VARII BLES:
PROVERBIAL TIP OF THE ICUE5EG. THEREFORE. Independent
WE STRESS SUCH MATTERS AS THE NOED FOR CLEARLY Dependent

Intermediate
DEFINING THE GOAL OF THE TEST PROGRAM,
ENUMERATING ALL POSSIBLE5 VARIABLES, AND HOW Anticipated complexity of relationships?

TO HANDLE THEM, I Known constraints on:
*G.J. Hahn variable/factor values

experimental procedure

W4HAT IS THE OBJECTIVE OF THIS INVESTIGATION ?4 What is the expected outcome?
*Why use GRAPH.ICAL methods?

48.S Hunter right-bran, creative
powerful, robust
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VIEWGRAPH TEXT

3 What do we mean by GRAPHICAL designs?

Andrews used representations that were

They convey more thani just thle co i~nt",inns
of factor levels that Nil 11he tried. i ri¶: u 'til-

Proessthe viewer Is irna~inntinn to think ',t tIhe
often important details as wdl n,; the nuimi
structure (cf viewgraphs 53&54)

At the first level of experimenit design, onie
needs to view the process thant %N-111he
investigated. This viewgraph show% the
representation Andrews used to plItt
experiments for a meat processing operntuon.

Source: Andrews (1964).

4 Ishikawa's "flshbone" diagrams: quicker to
draw, help to Identify appropriate

oil experiments to try.

60"" *A"Several formis:
cause-effect

1000ftprocess-oriented
clustered lists

A process~rlented diagramn for the axle
manufacturing problem would be organized
to have the moor process steps on the

000 backbone. with subprocesses hanging off
these, etc. Causes of wobble would tend to
be the outesrmost 'bones' on the 'skeleton'

MOO" Source: Ishlkawa (1982).
P4aeg 2.1 CrAuuNe.,d441 d~su w" fWeiln 004- Il e, V1I
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C-GAPICA DSIG O EPERMETS . AF

VIE WGRAPH TEXT

The following pages show graphicil methods
to address specific kinds of designs, e.g. fac-
torial. lifetest, etc.

Greatest concentration on rnulriciinv.-risinr'ml
point plots for factorial tmd fraicticonil

Outline designs. Reason: the ratio

What graphical tools exist to aid In designing experiments? practical value
What graphical concepts do these tools exploit? -----------

current use
What ae th, strengths and limitations of graphical methods?

What role can computers play In graphical DOX? Basic outline of the DOX portion of this tailk
is at left.

Summary - the place of graphical methods In DCX

13.1 A LIS op CONSTUCTION hiEiiion)s Graphical methods for DOX not recognised
1J.. as an entity historically. Computerized11.. fal'toving methods of constructing factorial designs literature search gave ZERO titles, keywords
litasure:in past 10 years with both GRAPHICAL and

(i) Orthogonal arrays. DOM.
(ii) Balauiced arrays.
(iii) .Latin squares and orthogonal Latin sqluares.
(iv) Itasdamard matrices.
(v) Monite geornetrics.

(vi) Confounding,.

4M11i) Gru 1.y Source: Raktoe, et. aL. (1981).
(ix) Cuiblinatutiai topology.
(A) Puldover.
(xi) Collaptiiig of levels.
(xii) Couinptostn (direct product and direct stili).

(xiii) Codes.
(xiv) Block designs.
(xv) F.5clunfe s.
(xv,) weighing designs.
(xvii) Lattice designs,
(xvii) Oiite atrnitsn.
(sxvi) oiwstte timel _.
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.GRAPHICAL DESIGN OF EXPERIMENTS R. BARTON

VIEWGRAPH TEXT

THE MAIN POINT: it is easier ;o
understand. manipulate and create experiment
designs when they are representcd

"Definition 13.1: A txn matrix A with entries graphically. Mathematica descriptions cn
from a set S of s symbols is called an be precise, sometimes clear. rarel% e:isv to

orthogonal array of size n, t constraints, s manipulate.
levels, strength d, and index X if any dxn
submatrx of A contains all sd possible dxl
column vectors based on s symbols of S Source: Raktoe, et. al. (1981).

with the same frequency X."

-Raktoe, Heydayat, and Federer

i ,, 0,. 4, First volume, first paper in Technometrics,
('-A- "" I ru'- . O..W. .,-, primary journal for examples of graphical

4- a-Nepm"DOX.

Several important concepts that will occur

/h again in later viewgraphs:

I) designs decompose into subsets

2) vertices of regular polyhedra make good

Z 

point subsets
3) use of point symbols to add information

to the plot

• CAN source: DeBaun (1959).
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S GRAPHICAL DESIGN OF EXPERIMENTS -- R. BARTON

VIEWGRAPH TEXT

9
Multidimensional point plots are most
common graphical DOX tool.

"Examples here show factorial point ptr5ts For
one-, two-, three-, and four-factor designs.

Source: Andrews (1964).

Another application, some minor variations in
presentation form. Dashed lines help locate
face-centered points.

Source: Myers (1985).

I'"v.295
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C GRAPHICAL DESIGN OF EX'PERIMENTS' -- R. BARqTON•_..

VIEWGRAPH TEXT

Youden: No scientist, when presented with
these designs graphically, would prefer the
one-at-a-time version on the left.

C GAesthetic property apparent here: sp~ro the
0 design space. Will return to this ',.ti' later.

A 0Source: Youden (1972).

0
/Z Izf z

CI4ANFCE ONE CIIANGF TWO
vARIMALE VAnlABLES

Youden's approach to representing an in-
complete design, circa 1962:

MWO• to, am, Fiow", I" w*.% Arm e ,." i.. A TABLE
1"iraIlsku i a X

r2
-_ Source: Youden (1962).

I 2 3 4 S I-

Ir 9' F V ? ' V , z

inZ Z t a r -1

lag ~' ,W e mlaf , -l• rl 9
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GRAPHICAL DESIGN OF EXPERIMENTS -- R. BARTON

VIEWGRAPH TEXT

1 Youden's choice for representing the sime
design, circa 1972:

v ~vAQFA^LES$ Y AND t"AT 3 ,.v[Ls-. ZAPO
AT 2EVA PLOT

"VNIABLE AT A
TIME Plot gives visual hints to confouituin,, r':,tterno CIIANGE• TWO

van,,,LEs AT that can be used not just to disply: ulcins.
A ̂,,. MEbut to create them as well.

Source: Youden (1972).

0nOULEM! SELECT MOST INFORMATIVE
SIV POINTS rROM 68 POINT SPACE

Box and Hunter used graphical models of
0. ,. P. ,N..,,R AND 3. ,,,,= designs, and studied their projections to find

ones with "balance".

... .. .... "--......Scurce: Box and Hunter (1961).

2--1m)m• , 21,;: i,,n Lthmy 2' InfetorIR.
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I ([ _GRAPHIlCAL DESIGN OF EXPERIMENTS -- R. BARTON •

V1EWGRAPH TEXT

Hunter used multidimensional point pints
(with appropriate reference lines) to illus-
trate many common designs.

j ~Here, graphical represenutnion is Cr
analytical use -- the designs h:ic ;tiIv hen
created.

Source: Hunter (1985).

IV d I-- -O~-cým

Plots used effectively to illustrate fractional
"design for an industrial application. This and
two following viewgraphs show fractional
factorial plots from recently published
applications.

Shading here used to identify each of the two
half-fractions.

Run order shown inside bubbles.

0

Source: Snec (1985a).
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C 'GRAPHICAL DESIGN OF EXPERIMENTS -R. BARTO

VIEWGRAPH TEXT

Here the actual factor levels are used to label
a 24-1 design.

- *-,-----Source: Andrews (1964).

18 Developing and understanding a graphical rep-
resentation for the design can later be aug-

---- mented to display the results of the experiment.

Bubbles of this 2"-l design show outcomes of
experiments.

SExtension: use a symbol that conveys both
-. location AND spread at each design point when

design includes replication (or is an inner-
outer design a-la Taguchi).

L13 Source: Snee (1985a).

So far, shown designs displayed graphically to reveal pro-

perties. That is, plots used DESCRIPTVELY. How to use
graphical methods to GENERATE DESIGNS for particular
applica.ions? READ ON ......- >

(most graphical references use plots for analysis or
presentation, not for design generation)
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C'GRAPHICAL DESIGN OF EXPERIMENTS -- R. BARTON

VIEWGRAPH TEXT

HOW TO GENERATE DESIGNS
GRAPHICALLY:

"-ft Is proved (Appendix 1) that if a polynomial of any PRINCIPLE #1
dee d, Is fitted by the method of least squares over any < -----------------

regionof Interest R In the kvariables, when the true (i.e. spread points out uniformly over sJ~;ce)

function Is a polynomial of any degree d, > d1, then the bias

averaged over R Is minimized for all values of the

coefficlentsof ltheneglected terms, by making the moments Source: Box and Draper (1959).

of order d,+d2 and less of the design points equal to the

conesponding moments of a uniform distribution over R."

G.E.P. Box and N.R. Draper

HOW TO GENERATE DESIGNS
GRAPHICALLY
PRINCIPLE #2

".. convenient to regard designs as built up from a number

of component sets of points, each set having its points

equidistant from the origin (if whole design too complex, use divide-

and-conquer strategy to design smaller

"... form the vertices of a regular polygon, polyhedron, or components to be combined -- see viewgraphs

polytope...

Source: Box and Hunter (1957).

- Box and Hunter (1957)
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GRAPHICAL DESIGN OF EXPERIMENTS R. BARTON

VIEWGRAPH TEXT

21 
HOW TO GENERATE DESIGNS
GRAPHICALLY

PRINCIPLE #3

"Choose new points to MAXIMIZE the minimum
(this consideration arise-, from ">.Tjtima:i

distance from all existing design points.." design considerations -- rmin vmitiroc f•,r first
order model terms)

Source: Kennard and Stone (1969).

-Kennard and Stone (1969)

SJ

Last point, used extensively by Box and
SOME USEFUL CONCEPTS Hunter, was mentioned earlier.

GOOD DESIGNS
from

MULTIDIMENSIONAL POINT PLOTS

I COVER THE DESIGN SPACE UNIFORMLY

2 DECOMPOS COMPLICATED DESIGNS INTO
GRAPHICAL SUBCOMPONENTS

3 §PAN THE WHOL DESIGN SPACE:
MAKE ADDED DESIGN POINTS FAR FROM
EXISTING POINTS TO MINIMIZE VARIANCE
FOR FIRST ORDER EFFECTS

4 CHECKKP..•_Q N. TO PLANES
AND LINES-
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GRAPHICAL DESIGN OF EXPERIMENTS -- R. BARTON

VIEWGRAPH TEXT

23

Box and Draper findings above give some
model independence.

BUT using graphical methods to fc.'crt-i(
P designs does not free us from the faict:

y. ,a.(T3m aAP)4 t = B 6ALANCED DESIGN GOODNESS DEPENI )S (ON THE
TRUE FORM OF THE MODEL BEING
INVESTIGATED.

P? Source: Satterthwaite (1959).

7.0m

05

y a.U*,(PT). . a,(Tf t = UNBALANCED

24 To illustrate multidim. point plots for design,
first show a 3-factor experiment to be run ina c;C ,• .- C 4 blocks of 2.

~ il~: ~Decomposition, projection, and spanning
(points 2, 3, &4) used to generate good design

,, ,, ,, here. (Decomposition is of cube points into 4
sets of antipodal pairs).

O 5 ri 1i riBlock effects confounded with main effects in
o =bad design seen from top and rear projections.

S. . . . The relative merits of these two designs much
easier to see here than in their original (non-
graphical) description.

BtOCKDo COMsaf pom Source: Box, Hunter, and Hunter (1978).
BOX. HIUNTEn & IIUNTtR.



'-GRAPHICAL DESIGN OF EXPERIMENTS -- R. BARTON

VIEWGRAPH TEXT

2) This figure shows a multidim. point plot for
a 25 factorial design. The blocks for the
design above (blocked designs from BFT&H)
set in a row rather than a square because
additional structure here not present above.

(J;: . .. (1•. Example: block effect (14+1)-(2-30 w,,i(il
appear as an "interaction" pattcrn I,'-T-. '. hile
an equivalent pattern, (1 4-2)-(3+4') 1, ils

,i have a main effect pattern.

d

0 0A S Feetorlaf Oeslgn DN4rERACT1ONMiNFET

WTER~nONMALN EFFECTS, •' " m' • •WS Wih W ,,•,PATTERN PATTERN

These plots and those to follow are easy to gcnerate and
manipulate using a Macintosh (MacDraw 0). Pro. jection I
ver NOT automatic. though.

26

Figure at left can be used as a template for
designs with 7 or more factors.

.. .. / Fill in subset of dots at small cube verzices to
generate an incomplete or fractional 2 design.

Use tw. dot symbols, e.g. 0 3Jfor a 2' design.

A 2 PeCtorist Design

D14#



VIEWGRAPH TEXT

Can do multidimensional point plots for 23mn

designs, too.

I Compare with Youden plot e~nrlicr. nnd
'="--'- viewgraphs 31-34.

t * * S

d

A 2 3 Peclorial DesIgn

2-way interaction patterns

28 Second example from literature is a 27" frac-
( IC tional factorial. Next three viewgraphs
PA.Im. MM .,,, , j•j"'>J illustrate the three designs presented in the

reference.

Value of "minimum aberration" designs is
consonant with graphical design principles.

For 2 designs, use decomposition and idea
that best fractions span the space: best point
allocation, therefore, is based on three way
interaction pattern.

fReference: Fries and Hunter (1980).
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VIEWGRAPH TEXT

29

C_ 71 Identical small-cube forms denoted by
woo.g voe.tIe circles.

rGood large-cube pattern.

S" Poor small-cube pattern - can be fixt'd.

. All projections can be Visualized without
much trouble.

Reference: Fries and Hunter (19R0).

d

Iw*bcfzodegubcd9[g

30

* jlem THE MINIMUM ABERRATION DESIGN

Pattern here is good; still some flaws - the
"choice of the particular 21 Ismall-cube pattern
has a 2-way pattern on the large cube, and two
way pattern separates levels of f based onffZ_." " levels of d (I=defg).

• At this point, can only push confounding

!_.around; not enough design points to fix.

'U Reference: Fries and Hunter (1980).
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VIEWGRAPH TEXT

31 ,Minimum aberration and incomplete block
"Lexam ples w ere from academ ic literature.

L; •

This example from RCA, industrial resenrch
problem. Design was generated graphically,
as shown here, for an experiment in 1 IN2.

•232W i:. Full factorial was a 2 3
Designed a 1/2 fraction.

7 1 O Source: Barton (1982).
1t W'TloIIAL DrUSIGH to,.

32

The 1/2 fraction was composed of three pieces,
following DESIGN PRINCIPLE #2. Easy to
see (and to design) this way.

- . S -E q- Note: numbers represent run order, which was
modified in final design.

-1-

Source: Barton (1982).

4-

/.4..- ' /O-
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VIEWGRAPH TEXT

3333 BOX-BEHNKEN DESIGN

Illustrates use of icons for complicated multi-
dimensional point plots:

"f
"" I...:

3 ---- L" - -

d ~Reference: Box and Behnken (1960).

Box - Belnke.n 3 PrUCllonal Oeslgrw

34

Easy to generate alternative fractions using the
fob icons; Bad Barton at left.

•' Some properties of both designs immediately
t obvious:

no center
no extreme vertices (violates #3)

Other properties (like why Bad-Barton is bad)
not obvious without projections.

Flar.

•ulfR Oqlqn l307



( ,GRAPHICAL DESIGN OF EXPERIMENTS -- R. BARTON

VIEWGRAPH TEXT

Multidimensional point plots for factorial
designs allow intuitive modifications to

____._-- _______.______ .,incorporate constraints on the design space.

_,�_•__ .s_•,_ _ 2 Snee (1981) gives rules used by CONSIIW to"*.,', 'i, * place mixture design points on bminc1rdrics
caused by constraints. First ex:imple in this
presentation of "mental graphics".

S""Source: Snee (1985b).

LO •rn LO

For many practical problems, constraints are
I- .few enough to allow visualization-

-and better control of the design.
I . "* f I

" / ; I It ''4,, ..

,"'-20-- Source: Kinzer (1985).

II"3.

30 E.



GRAPHICAL DESIGN OF EXPERIMENTS -- R. BARTON

VIEWGRAPH TEXT

• )~ ~KIE1 .... SaI lUDY Ur 0 x~tt,,c 0xIIu^,.O

rxrrfzimrnv1r^I toN Another example showing constraints
limiting the experimental region.

Note: complex constraints rni sl,"ct :i

_ N" i~ktransformation to the model factors.

17 ,-1 a• .,,, Source: Snee (1985b).

7. U A 80 1I.0O
OMXArtN CONC(NIRAIION

FIGURE 6. OrIlha-Xylene Oxidaliao Kihelic Shiody-Ex-

poriietlnlI Regiinn is Delnied by Tw, Nooi/miallel Planes
in h�TI0r 11 IY1rinfi,,s I JIusola. BDam,, rid Dowic 1 197211.

Multidim. point plots are useful concepts even
when they can't actuAily be drawn. Fry [] usesFACTORIAL mental graphics" to construct fractional-2 3 .
designs from hypersphere designs composed
of multiple sets of 2 designs.

PLOTS Why factorial (hypercube)?
Oanswer: Tmits # of factor levels, easier to do

math, plot results, and view design in
SUMMARY 2-D, 3-D, etc.

NEXT SECTION REVIEWS SPECIAL
METHODS FOR RESP. SURFACE / EVOP
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GRAPHICAL DESIGN OF EXPERIMENTS -- R. BARTON

VIEWGRAPH TEXT

__,_-_,-_ plots for design w ere part of the datam. collection worksheet.

Graphical design provides layout tn tun lie
0 *L ( *0

e i from.I

(I.) (U) 1 CLUD %

1l.1 . , $am . .-- SA Jil 6-!S l
(ImTU 7?ý 1 P ____I____

Source: Box and Hunter (1959).

9,, 4-4 All= -•, . , - 0. ,,

S___ _ -"-__I- -

40

A simplex plan that is updated as runs are
completedcan be used to choose the next run

"II I'"" c# j point.

2 ,.,This is graphical sequential design.
MtAN 2'r Easier if superimpose contours of model fitting
PRO .a recent subset of observations; see next

-1_ WA'.' , ".,.o) view graph.
20 F. 37 (A.,)

,'• '"--€,=,;! ,.+"-, & '"-,-~- Source: Hahn,Bemesderfer,and Olsson (1986)
tRXClAfll tI tkl At IU

a19-rsr--1 PLAd -rO
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VIEWGRAPH TEXT

41

r mi, ') rTi in7rTIrt',, Here the model is not a polynomial in the
usual (Taylor approximation) sense, but

,;-, /"- .Hardy's [) interpolation function.

. ..":. "Source: Barton (1985).

.- ' .Reference: Hardy (1971).

SI . 7 .. /. •T,--

rCi*,nflnn i , 9ewfhwy m!•ll on £i' b'm, n vw'hm mIlr

42

Above trajectory was for a Nelder-Mead
simplex sequential optimization strategy.

" . .'. I-Herearesimplices of adifferent-sort for DOX- --

simplices arising from mixture experiments.

* L.~...The next few viewgraphs review graphical
A "" "" "repres.ntat.ons that have been used to createA i ,,. ... A ,,Al ,,..e..r re e ta on

. - and analyze mixture designs.
'p I -a • "

A I A 34 1 t
A ,,It.. Source: Cornell (1981).

A. (4 It, ~.1 .h
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I GRAPHICAL DESIGN OF'EXPERIMENTS R. BARTON

VIEWGRAPH TEXT

43 As for factorial designs, point plots can be
"used to identify subregions for study.

In addition to the usual mixture constraint.
most real mixture problems have additional
requirements that limit the design space.

Source: Koons and Wilt (1985).

a t

' \

%,,

44'4
S~,,

______ /More complicated constraints yield irregularly
shaped regions.

.lOSt.•qI $1[ *six, "K IMI *!

"S nee's XVERT program depends on the
"*sef,' "I a IW S% geometric concepts of edges, vertices, and face

centroids to select "good" design points.
"Again, this is "mental graphics", since a
graphical image is used, but it is not actually
drawn.

Source: Snee (1981).

b7" it/ , .. I. .

Figure 4. Thtee-Component Mixture System With
Single Component and Mulolple Component Con-
s$taints
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GRAPHICAL DESIGN OF EXPERIMENTS -- R. BARTON

VIEWGRAPH TEXT

45 -N

,, ''Four factor mixture experiments and
constrained subsets can be drawn effectively,
and have been used in industry.

Source: Hare (1985).

This ends material on multidimensional point
NOMOGRAMS plots for DOX.

Nomograms and graph paper graphs are
practical tools for DOX, but they are not in the

and other spirit of earlier material. Only a brief sample
here to illustrate the kind of advantages theyoffer.GRAPH PAPER

GRAPHS
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VIEWGRAPH TEXT

47

Graphical technique here is one step removed
- from design. It represents a mitheniatical

function of the design structure.

Source: Box and Lucas (1959).
jr q. 3 i, Tl .L--i I-"w . Usý 0" .t. /((, 1. 0 7, M 1 h th. rt~i-l. .I.,41-

A graphical aid lor O-opllrnal design

(PAW 4 Lucue. I959M

48

This nomogram allows experimenter to choose* '~z :'sample size required for desired accuracy of the
slope coefficient.

- S Source: Beech
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VIEWGRAPH TEXT

50- Like a nomnogram, this graph is used to show
,, 4~the variance of maximum likelihood estimantes

* as a function of design parameters.

1U1  The model here is A~rrheniu-s; dcsizn
0I l. W 1 71. parameters are test temiper attires ;mcltest

WrH Iltime. Censored observations ire e~xpected.

Source: Nelson and Kielpinski (1975).

ly :'j4 I

1.0 2.0 3.0 5.0 100 20 '0 cc 100

50

I, if ~ .Because design properties are displayed
-- - --- -graphically, it is possible to optimize other

deinproperties (e.other than variance of
estimates) by making graphical additions!

.0. Example: minimize the maximum test
V - I temperature without exceeding a variance limit.

101 Source: Barton and Nelson (1987).

1.0 2.0 30 50 t00 20 to 50 t00
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VIEWGRAPH TEXT

Like the nomograms and graph-piper
graphs, the network design representations to
follow are one level removed from the

NETWORK design.

DESIGN Because of this, expect th, the,, will hc less

REPRESENTATIONS useful for design synthesis.

levels These plots, due to Butz, relate connectivity to
estimable contrasts.

YFor small examples, these plots can be used to
set up and evaluate designs for ANOVA

~2 models.

3• Source: Butz (1982).

AI ft AI.WNt ?1NFIIF

4r~crYIInA4114 -4-011 ww
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VIEWGRAPH TEXT53
Taguchi uses "linear graphs" to expose

42 confounding patterns in fractional designs.
o 50They appear useful for choosing a defining

relaion that yields a desired confounHding
2 4 pattern.

Method of construction: unknown

(2) £ Source: Taguchi (1980).
13II• It

to A
544

Cuthbert Daniel's method for displaying
.,.. . , ,, ,.confounding patterns is more difficult to see

(for me). Used to analyze rather than generate.
1t 4. AC?

,,.p.i,.- .,.be ,.., . ...#.. .-. ,..,4-,1. Source: Daniel (1962).

* %.

o" P., th,, e

h~w f Cr . w vh A.I.. - 3..
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VIEWGRAPH TEXT

Graphical representations of hierarchy help to
develop nested designs for mixed andi ,•-.,random effects models.

"Andrews was particularly graphic.

Source: Andrews (1964).

*& I.&%. .W Z 1 I I I I I I I I 1 11
A. A. A. A. A. A. A. A.

A -L, _ it I Ii i 1 l

63
A simpler, perhaps less informative
representation of the same design. This form
has been used by several authors.

See also: Leone,Nelson,and Johnson (1968)

AMALY3
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VIEWGRAPH TEXT

57

What graphical concepts do these
tools exploit?

1 Design Balance/Symmetry
2 Design Projections
3 "Face" Incidence of Design Points
4 Network properties: connectedness,

etc.
5 Analog Computations

58

What are the strengths and limitations
of graphical methods?

"+ Flexible
* make tradeoffs visually
- incorporate constraints graphically

+ Robust
"+ Uses powerful computer - human eye
"+ Graphical DOX methods easy to use &

remember

- Non-quantitative
- Dimensional limitations

3Jj 319



GRAPHICAL DESIGN OF EXPERIMENTS -- R. BARTO

VIEWGRAPH TEXT

Of course, computers play other roles in DOX,
e.g. DETM.AX. Here we mein getting
computers to help with the plotting.
projections, views, etc.

What role can computers play In graphical DOX?

Make descriptive tools into prescriptive ones
.rapid plotting of alternative designs
*exhaustive plots of alternative designs for scanning

2 Interactive graphics
foeal time design manipulation

*computed design properties updaled and displayed
3 Rule-based systems to manipulale geometric or network objects

60.
Even for DETMAX applications, graphical
methods resorted to for understanding and
evaluation.

Source: Mitchell (1974).

xcc
$ LCt.VIU. 0 OVIEo?!o

III BY O. O. ANO a
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( • GRAPHICAl DESIGN OF EXPERIMENTS -- R. BARTON ,

VIEWGRAPH TEXT

Examples of graphics shown here aren't meant
to be prescriptive; graphical DOX as a distinct
entity is too new.

Summary- the place of graphical methods In DOX This selection represents useful methods to

I Graphical: Investigative, creative trigger your own imagination.

2 Mathematical, Computer-Aided: conflrmatory Try to find useful ways to handle designs with
many factors.

USE YOUR RIGHT BRAIN
(and may the force be with you!)

Reference: Box (1984).

NEXT:

GRAPHICAL
ANALYSIS
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