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FOREWORD

The Thirty-Fifth Conference on the Design of Experiments in Army
Research, Development and Testing had as its host the TRADOC Test
and Experimentation Command, Experimentation Center (TEC), Fort
Oord, California. This conference was planned for 18-20 October
1989, and was held in the Monterey Beach Hotel, Monterey, CA. The
earthquake on 17 October prevented several of the speakers fronm
attending this meetinyg; and while the power was off, problems arose
for many of the speakers. Dr. Marion Bryson, Director of TEC,
sarved as local host and conference coordinator. He and members of
his staff are to be commended for supplying innovative and
immediate solutions to many problems associated with the quake.
Without their support the conference would never have succeeded.

The Army Mathematics Steering Committee (AMSC) is the sponsor of
the Conferance on the Design of Experiments. Members of this
committee would like to thank D. Hue McCoy, TRADOC Analysis
command, for organizing the Special Session on "Statistical Issues
Related to Combat Modeling." The speakers were Hue McCoy, Bill
Baker (BRL), and Eugene Dutoit (Infantry School). This session
achieved 1its purpose of stimulating a dialogue between combat
modelers and the statistical community. The AMSC members feel that
the addresses by the principal speakers, as well as the contributed
papers by Army and academic personnel, also stimulated the
interchange of ideas among the scientists attending this meeting.
Notei below is the list of invited speakers selected by the Progranm
Committee:

Speaker and Affiliation = Title of Address

Professor Robert Bechhofer An Appraisal of Several

Cornell University Multistage Selection
Procedures

Professor William J. Conover Latin Hypercube Sampling, a

Texas Tech University Way of Saving Computer Runs

Professor Gary Koch An Overview of Statistical

University of North Carolina Methods for Categorical Data

at Chapel Hill

Professor David W. Scott Statistical Data Analysis
Rice University

Another event associated with each of these conferences is a two-
day tutorial. This year, Ronald Hocking of Texas A&M University
presented a tutorial entitled "Analysis of Linear Models with
Unkalanced Data." It was held two days before the start of the
conference and was conducted in the TEC Protocol Building at Fort
Oord.
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As the master of ceremonies at the banquet and the recipient of the
Wilks Award last year, Dr. Marion Bryson had the honor of
announcing the winner of the ninth U.S. Army Wilks Award, Professor
Boyd Harshbarger. He was selected because of his research
endeavors, his promotional activities for Army applications, his
unending supply of speakers for these conferences, and his help in
numerous ways to carry the Army forward in many important
statistical areas. Because of ill health, Professor Harshbarger
wate unable to attend the c¢onference. Dr. Douglas Tang,
rzpresenting the Army statistical community, accepted the award on
his behalf.

Members of the Army Mathematics Steering Committee would like to
thank the members of the Program Committee for guiding this
scientific conference, and to also thank the Mathematical Sciences
Division of the Army Research Office for preparing the proceedings
of these meetings.

PROGRAM COMMITTEE
Carl Bates Robert Burge Francis Dressel
Eugene Dutoit Hue McCoy Carl Russell
Douglas Tang Malcolm Taylor Jerry Thomas

Henry Tingey
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AGENDA

THE THIRTY-FIFTH CONFERENCE.ON THE DESIGN OF EXPERIMENTS
IN ARMY RESEARCH, DEVELOPMENT, AND TESTING

18-20 October 1989

Host: TRADOC Test and Experimentation Command
Experimentation Center (TEC)
Fort Ord, California 93941-7000
Marion R. Bryson, Director

Location: Monterey Beach Hote!

2600 Sand Dunes Drive
Monterey, California 93940

Wednesday, 18 October 1989
0730 - 05900 REGISTRATION
0915 - 0930 CALLING THE CONFERENCE TO ORDER:

Marion R, Bryson, Director
TRADQC Test and Experimentation Command
Experimentation Center (TEC)
WELCOMING REMARKS
0930 - 1200 GENERAL SESSION I

Chairperson: Marion R, Bryson, TRADOC Test and Experimentation
Command, Experimentation Center

0930 - 1030 KEYNOTE ADDRESS:

AN APPRAISAL OF SEVERAL MULTISTAGE SELECTION PROCEDURES
Robert Bechhofer, Cornell University

1030 - 1100 BREAK

1100 - 1200 STATISTICAL DATA ANALYSIS
David W. Scott, Rice University

1200 - 1330 LUNCH
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1330 - 1500
1330 - 1500
1500 - 1530

Wednesday (Continued)

CLINICAL SESSION A

Chairperson: Barry Bodt, U.S. Army Ballistic Research
Laboratory

Panelists: William J. Conover, Texas Tech University
Jayaram Sethuraman, Florida State University
Nozer Singpurwalla, George Washington University

HAS YARIABILITY BEEN REDUCED?
Gary Aasheim, U.S. Army Armament, Munitions and Chemical
Command

WHICH DISTRIBUTION APPLIES?
Gary Aasheim, U.S. Army Armament, Munitions and Chemical
Command

ddrdeieir

TECHNICAL SESSION 1 o
Chairperson: Francis Dressel, U.S. Army Research Office

MODELING DEPENDENCE INDUCED BY COMMON ENVIRONMENTS
Mark A. Youngren, U.S. Army Concepts Analysis Agency

EVALUATION OF DESERT CAMOUFLAGE UNIFORMS BY GROUND OBSERVERS
George Anitole, Ronald L. Johnson, U.S. Army Belvoir
Research, Development and Engineering Center, and
Christopher Neubert, U.S. Army Materiel Command

ELIMINATING CALCULUS DEPENDENCY IN THE DERIVATION OF DODGE'S u
Richard M, Brugger, U.S. Army Armament, Munitions and
Chemical Command

HOW SHOULD ERROR ESTIMATES OF FIXED CAMERA CALIBRATION
CONSTANTS BE COMPUTED?
William S. Agee and Andrew C. El1ingson, U.S. Army White
Sands Missile Range

BREAK
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1830 - 1710

0815 - 0945

Wednesday (Continued)

TECHNICAL SESSION 2

Chairperson: Malcolm Taylor, U.S. Army Ballistic Research
Laboratory

PROMOTING STATISTICAL LITERACY AND INTERACTION OF RESEARCHERS
AND STATISTICIANS

Emanuel Parzen, Texas AZM University

BAYESIAN INFERENCE FOR NONHOMOGENEOUS POISSON POINT PROCESSES
USING EXPERT OPINION AND DATA

Nozer D, Singpurwalla, George Washington University

RANDOM MAPPINGS
Bernard Harris, University of Wisconsin-Madison

Thursday, 19 October 1989
APPLICATION SESSION

Chairperson: Carl Bates, U.S. Army Concepts Analysis Agency

HANDLING UNCERTAINTY IN EXPECTED VALUE MODELS
Mark A. Youngren, U.S. Army Concepts Analysis Agency

APPLICATION AND CALIBRATION OF A STOCHASTIC c3 COMBAT MODEL FOR
QUTER-AIR AND INNER-AIR BATTLES
[zhak Rubin, University of California at Los Angeles and

Israel Mayk, U.S. Army Communications and Electronics
Command

LOADING AND MATERIAL PROPERTY UNCERTAINTIES IN FINITE ELEMENT
ANALYSES FOR ORTHOPAEDICS

Shirish Chinchalkar and D. L, Taylor, Cornell University
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0815 - 0945

0945 - 1015
1015 - 1200

1015 - 1200

Thursday (Continued)

TECHNICAL SESSION 3

Chairperson: Jock 0. Grynovicki, U.S, Army Human Engineering
Laboratory

NONNEGATIVE ESTIMATION OF VARIANCE COMPONENTS [N MIXED LINEAR
MODELS WITH TWO VARIANCE COMPONENTS !
Thomas Mathew, University of Maryland

NONNEGATIVE ESTIMATION OF VARIANCE COMPONENTS IN MIXED LINEAR
MODELS WITH TWO VARIANCE COMPONENTS I
Bimal Kumar Sinha, University of Maryland

NONPARAMETRIC INFERENCE FOR IMPERFECT REPAIR MODELS
Jayaram Sethuraman, Myles Hollander, and Brett Presnell,
Florida State University

BREAK
CLINICAL SESSION B

Chairperson: Carl Russell, U.S. Army Operational Test and
Evaluation Agency

Panelists: Robert Bechhofer, Cornell University
Bernard Harris, University of Wisconsin
Emanuel Parzen, Texas A&M University

AgPLICATION OF A COMPOSITE DESIGN TO TEST A COMBAT SIMULATION
MODEL
Car) B, Bates, U.S. Army Concepts Analysis Agency

APPLICATION OF RESPONSE SURFACE METHOD TO RANDOM VIBRATION
Mircea Grigoriu, Cornell University

ik d

TECHNICAL SESSION 4

Chairperson: John Robert Burge, Walter Reed Army Institute of
Research

DISTRIBUTION THEORY FOR VARIANCE COMPONENT ESTIMATION
DIAGNOSTICS
Jock 0. Grynovicki, U.S. Army Human Engineering Laburatory
and John W. Green, University of Delaware




1200 - 1330
1330 - 1530
1630 - 1600
1600 - 1700
1830 - 1930
1930 - 2130

Thursday (Continued)

TECHNICAL SESSION 4 (Continued)

NUMERICAL ESTIMATION OF THE PARAMETERS OF THE SOURCE DENSITY
FUNCTION
Charles E. Hall, Jr,, U.S. Army Missile Command

THE HUNTER PROBLEM IN A RANDOM FIELD OF OBSCURING ELEMENTS
Shelemyahn Zacks and M. Yadin, State University of New York
at Binghamton

LUNCH

SPECIAL SESSION

Chairperson: D. due McCoy, U.S., Army TRADOC Analysis Command

STATISTICAL ISSUES RELATED TO COMBAT MODELING
0. Hue McCoy, U.S, Army TRADOC Analysis Command

A NONPARAMETRIC APPROACH TO THE VAL IDATION OF STOCHASTIC
SIMULATION MODELS
William E. Baker and Malcolm S. Taylor, U.S. Army Ballistic
Research Laboratory
SMALL SAMPLE TESTS OF SIGNIFICANCE IN SUPPORT OF COMBAT
MODEL ING
Eugene Dutoit, U.S. Army Infantry School
BREAK
GENERAL SESSION II
Chairperson: Gerald R, Andersen, U.S. Army Research Office

LATIN HYPERCUBE SAMPLING, A WAY OF SAVING COMPUTER RUNS
William J, Conover, Texas Tech University

CASH BAR
BANQUET AND PRESENTATION OF WILKS AWARD
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0815 - 0945

0945 - 1015
1015 - 1145

ADJOURN

Carl Bates
Eugene Dutoi
Douglas Tang

Friday, 21 October 1939
TECHNICAL SESSION 5

Chairperson: William S. Agee, White Sands Missile Range

THE VARIANCE OF THE INTEGRATED PROCUREMENT PROBLEM VARIABLE -
A FRESH APPROACH
Barnard H, Bissinger, Pennsylvania State Unfversity

GRAPHICAL TOOLS FOR EXPERIMENT DESIGN
Russell R, Barton, Cornell University

MOMTE CARLO SURFACE APPROXIMATION USING ORTHOGONAL FUNCTIONS
Peter W. Glynn and Donald L. Iglehart, Stanford University

BREAK

GENERAL SESSION III

Chairperson: Douglas B, Tang, Walter Reed Army Institute of
Research; Chairman of the AMSC Subcommittee on
Probability and Statistics

OPEN MEETING OF THE STATISTICS AND PROBABILITY SUBCOMMITTEE OF
THE ARMY MATHEMATICS STEERING COMMITTEE

AN OVERVIEW OF STATISTICAL METHODS FOR CATEGORICAL DATA

ANALYSITS
Gary Koch, University of North Carolina at Chapel Hill

PROGRAM COMMITTEE

Robert Burge Francis Dressel
t Hue McCoy Car! Russell
Malcolm Taylor Jerry Thomas

Henry Tingey
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STATISTICAL DATA ANALYSIS:
HOW FAR WILL COMPUTER GRAPHICS TAKE US?

David W. Scott
Department of Statistics
Rice Universit
P.O. Box 189
Houston, Texas 77251-1892

ABSTRACT. In this paper we survey the dircctions researchers are following in statistical
graphics, Hardware support for animation and of color is expanding rapidly while price is at least
decreasing, While a fairly optimistic scenario can be drawn, the most correct statement we can
make about the future of graphics and statistical computing is that the uncertainity has never
been greater. Potential ubstacles towards efiective use of computer graphics are discussed, particu-
larly in the academic sctting, Strategics to break thess bottlenecks will be suggested. Otherwise
excess CPU cycles may remain so,

CTION. Each year at the annual meeting of the National Computer Graphics
Association, a gala dinner is held at which the winners of various computer graphics contests are
presented. As the winning computer-generated images and videos are presented, with bumble bees
darting among flowers and pool balls reflecting the images of a futuristic shiny room, one is
overwhelmed by the shear raw power and impact of the presentation, There is not (yet) a category
for statistical presentation, but one senses this is not out of the question.

The impact of modem computer graphics on statistical education and practice has not yet
been great. Eddy et al. in a recent article in Statistical Sciences have attempted to describe future
computing needs and trends, and graphics is an important part of the overall picture. The average
statistician 1etains a small collection of typical images that are recycled over and over: scatter
diagrams including residual plots, frequency curves such as histograms, curve fits such as regression
lines, elliptical contours of normal densities including principal components; the list is surprisingly
small. Far more emphasis is given to tables: summary statistics tables, chi-squared tables,
analysis of variance tables, tables of percentiles, and spreadsheets. This follows the natural incli-
nation of statisticians to present a parsimonious summary of an incidence of data analysis: choose
a powerful model well-studied in the literature, estimate parameters and determine significance,
and present results summarizing the model in tabular and sometimes graphical forms, Image pro-
cessing, animation, rotation are all very unparsimonious statistical tools,

Historically, technology has affected the relative importance of these forms. Early data
analysts such as John Graunt and William Petty favored tabular presentation, after all, paper was
a dear commodity. William Playfair showed the array of graphical presentation of business duta
was worth the paper. Computation was sxpensive, and the human efbrt required for creating
efective graphs was relatively cost-efective. Karl Pearson began the trend towards testing and
tabular presentation, but devoted much energy (o graphs in the form of frequency curves. Fisher
and others accelerated the tabular form with analysis of variance and maximum likelihood, which
emphasizes parametric analysis over the more graphical nonparametric analysis. The emphasis
was on mathematical statistics. The rapic increase in number crunching ability spawned the crea-
tion of statistical packages, with largely numerical output. Graphics was not ignored in such pack-
ages (certainly not in the past few years), but the quality was relatively low and options limited.
Quality graphics output is still much more expensive than computing, but the absolute price of
both has decrcased so dramatically that we are secing an explosion of interest in graphical statis-
tics. Truly impressive packages for personal computers are available and SAS and SPSS have pro-
vided similar capabilitics for mainframes. Scparately, many non-statistical companies provide
software for prescntational graphics, aimed at busincss markets. ISCOL is one example, but such
quality products cost ¢ven academic workers many thousands of dollars,




F COMPUTER GRAPHICS. How strong has the impact of com-
puter graphics been on the statistical community? To look at many journals and statistical text-
books, you would be hard pressed (o detect any revolution, In its fourth edition, Hogg and Craig's
classical textbook on mathematical statistics contains only five figures! The Journal of the Ameri-
can Statistical Association is showing the change, but in unexpected ways. Roughly half of the
papers contain only tables. Those with figures contain more figures than papers ten years ago, but
ironically the quality is poorer. Ten years ago artwork was professionally drawn (if only approxi-
mating trutn). Many figurcs today are drawn by PC’s, which are acceptable but clearly inferior in
presentation quality and impact of their professional cousins, But the cost is so much less that we
accept substandard quality, The very recent increase in laser graphical output partially justifies
the premature switch to PC graphics,

The long and short of it is that we are within five years of everyone having the ability to
produce very high quality two-dimensional graphics virtually without cost, In other words, we
have succeeded in automating the kinds of graphs William Playfair drew 200 years ago.

3._NEW DIRECTIONS IN COMPUTER GRAPHICS. The emphasis of this paper is on
how much farther will computer graphlcs take statistics? Why is there a trend towards newer
graphical presentations? Graphics is at odds with classical statistics because graphics is non-
parsimonious, A graph cannot be ncatly summarized or reduced to a few key cocfficients and p -
values. Graphs demand close scrutiny and invite speculation and interpretation, something hardly
cver scon in parametric analyses, But the fundamental distinguishing feature is that graphs are
subjective, imprecise, manipulative, yet powerful, One novel multivariate graph is the Chemoff
face. An entire conference in 1978 was devoted to evaluating the subjective aspeats of this tech-
nique, in particular, coping with the almost infinite possible alternative constructions for individual
datasets. ‘There is no consensus whether it iy a serious statistical tool, The discipline of statistics
attempts to be very precise about its imprecision, and many statisticians do not find graphs precise
cnough to serve as the analysis, preferring tables and statistics.

Yet the whole new technology of computer graphics and enhanced graphics chips has opencd
up the possibility of a now generation of presentation graphics. More statisticlans are focusing
their rescarch efbort in this arcy, and are represented by the new ASA section culled statistical
graphics. The concerns about limitations of the old style graphics are even more critical in the
new style of graphics. The key additional features are color, solids rendering, translucency, and
animation; the Pixar machine is the state-of-the-art for all of these features. If we consider the
cxploratory graphical tools for high dimensional data, we sce that an important part of data
analysis is luck. For the higher the dimension, the smaller the fraction of data that can be
“cxplored’’ in a given amount of time. Thus difierent workers examining the same multivariate
data will probably scc disjoint parts of it - quite in contrast to a parametric world using principal
components., Even the order in which the data are examined can be a factor, given the inevitable
fatigue. Some rescarch is already under way to help automate the scarching process (reminds me
of the computer science project to automate the game Rogue, called rogomatic). But real objec-
tions have been made about this imprecise form of data analysis, The use of color excludes those
who are color blind, The use of sterco viewing techniques is maddeningly unsuccessful for a large
percentage of professionals. Each new subjective element increases the power of the data analysis
but decreases the reliability and widespread usefulness of these techniques. Publishing is virtually
impossible, until CD-ROM publishing is available, A nonexhaustive list of projects includes: pro-
jection pursuit (Tukey, Friedman, Stuetzle); animated scatter plots (Tukey, Huber, Donoho);
exploratory methods (Tukey and Tukey); density estimation (Scott, Thompson, Tarter); glyphs
and stereo (Carr and Nicholson); grand tours (Buja and Asimov); programming languages (Becker,
Chambers, Donoho, Huber); programming environments (McDonald).

4, MANAGING THE FUTURE. But enough about how hard it all will be and how unap-
preciated it all may be. Are we going to be able to sustain research in novel statistical graphics?
As an engincering undergraduate in 1968, I used 1o wait in line to usc 4 Wang time-sharing calcu-
lator terminal (it actually could do the transcendental functions to twelve significant digits!). Once




we began doing our number crunching thrcugh programming languages, we could accept and track
the new computing resources with almost no overhead. So in the past fifteen years, I have written
Fortran (and PL/I) programs on as many types of hardware. The only ovcrhcad was learning a
new cditor, a few system commands, and the faster and bigger machine was immediately increas-
ing productivity and opening new horizons. There is still a bit more of that to be had. With the
workstations now available, we have finally obtained the luxury of wasting a huge fraction of CPU
cycles. This is of course a correct state of affairs given the relative cost of faculty time. Idle CPU
seconds are costly only in terms of maintenance; idle graphics workstations cannot yet be justified
as maintenance costs are very high.

But we must face two developments. The first is parallel computing. The second is graphics.
Statisticians can probably make the most efBctive use of parallel computers than any single group
of rescarchers, because much of our computing involves very loosely coupled computation such as
Monte Carlo simulation. Numerical analysts, on the other hand, face tightly coupled computation
which provides real gains only in rather specific situations. Theoretical limits exist to performance
in tightly conpled systems, no matter how many parallel processors are available, But all that
aside, to effctively use hypercube or other parallel architectures is not a straightforward exercise.
It is even worse than having to give up your favorite programming language and return to assem-
bler, Secrious allocation of time and other supporting resources must be made at this time. One
reaction is that it is not worth the efbrt and just to wait until some computer scientist writes an
incredible parallel compilor that takes non-parallel code and optimizes into parallel environments,
(Not too likely in my opinion. Cene Golub at Stanford in a comment after a lecture by John Rice
lamented that thore weren't enough numerical analysts to go around tc try and make parallel algo-
rithms for cach diffrontial equation and hardware configuration.)

Graphics presents the same challenge, With more modest efiort, one can produce usoful pic-
tures on a PC or graphics terminal of the William Playfair variety, Playing with the color tables
can be fun. Choosing the specific 256 colors from the 16,777,216 choices can be a bit frustrating,
Graphics chips have helped enormously, putting frequently used graphical transformations into
hardware and supporting animation, The interface with these chips is at about the same level as
other graphics commands, almost at the assembler level, pixel by pixel. Some systoms are avail-
able at the command lovel to avoid this, but the convenlence eventually becomes the limitation,
both In functionality and performance. At a somewhat lower level, graphics standards have
appeared, such ns CORE and GKS. But any commercial outfit will admit that the advantages of
portability are outweighed by the benefits of performance allowed by assembler programming, But
mosi academics are satisfied by ‘“‘prototype” systems rather than commercial performance.

My obscrvation is that with graphics systems it is very difficult to build upon previous work.
Each new generation of hardware demands a complete new attack, As the graduate students who
did the previous system disappedar, the next gencration of students have a more difficult task get-
ting up to speed. For the better hardware often has many more capabilities, so reproducing the
previous system often much harder. Therefore, less time is available for extending the previous
system and actually less rescarch gets done. This is a bit overdrawn, but accurately reflects what
has happened over the past fifteen years, At Berkeley, a biostatistical rosearcher developed a
analysis and graphical system on some IBM hardware that he nursed for cight ycars beyond its
supported lifetime, before finally biting the bullet and updating hardware. At Rice and Stanford
and other places, graduate students who worked on very specialized hardware and produced very
useful systems, graduated and went away, What was loft was a collection of faculiy who had
directed the ressarch but who did not have the time to actually program the system, maintain it,
or even fully understand it. Thus the next generation of graduate student basically found it
impossible to effctively use the machines. Maintenance costs and down-time were significant as
the expensive hardware aged, and using the previous student’s system frustrating (and not
rescarch), The apparent time to start new and create a wholly new system was determined too
risky, since rumors that the machine might be sold (since no one was using it) began to circulate.
The traditionally successful faculty/ graduate student relationship was found wanting. The need
for continuity implicd the need for a new type of person in the picture (nontraditional), the staff
support group. These persons can usually be recruited from recent graduates by offering post-docs,




research positions, and other positions not commonly found in statistics groups. Thus there is a
need to restructure research personnel to continue this work. The systems are too complex for
individual faculty to manage (much less to retrain unproductive faculty)., Fewer and fewer gradu-
ate students are able to master the complexities of these systems in the few years available and
make real contzibutions. Those who can leave quickly, leaving behind a serious void in continuity,
rendering expensive equipment unusable almost overight. These statistics and computer science
wizards are not well-recognized as doing valid statistical research worthy of tenure track (as
opposed to statistical computing). The result is inability to do the desired rescarch, which neces-
sarily includes extensive systems development. We seem to be moving towards the system used by
sciences, many post-docs per faculty member as well as support staffto provide full-time research
efiort and continuity of systems expertise and support, something that cannot be even partially
satisfied by faculty and students alone. Unfortunately, the job market is so strong in statistics as
opposed to these other areus that it will be very difficult to build up new centers and move
towards the big research lab model,

This will be a rather traumatic trend. It is well-known that using programmers greatly
reduces output (due to decreased reliability of code and less intimate knowledge of the problem)
and decreases hands-on experimentation that leads to new developments, but senior faculty time
can not usually be allocated significantly for this purpose. Debugging purely graphical systems is
extraordinarily difficult. Dr. Banchoff at Brown University reports that Roger Penrose found a bug
in a four-dimensional hidden-line removal algorithm by simply watching it perform, Testing will
be an enormous headache and problem, Everything looks so pretty when the output is graphics,
Difficult to be critical. We have watched computer science departments try and manage very large
development projects., Statistical ressarchers will have to pay attention to how these efbrts have
been organized and managed, Statisticians seem to be a bit impatient and more satisfied with pro-
totypes of systems than is healthy for the profession.

Another approach has been to move to novel computing cnvironments that hold the promise
of Improved user productivity and portability, The LISP tnachines fall into this category.

At Battelle Labs in Richland, Washington, Wes Nicholson and Dan Carr have pioncered
research into the use of glyphs and stereo viewing for data analysis. In 1983 they invited a dis-
tinguished panel of statisticians and computer scientists to review and criticize their progress, It is
clear from the reprinted papers and discussion that the visitors could not declde what was “funda-
mental research’’ and what was merely “systems development.' This lack of a clear understanding
of the joint roles of these activities has hindered the professional development of many young
computer-bound statisticians,

5. CONCLUSIONS. We asked the question of how far will computer graphics take us? The
answer is 4 long way, but not with the current research structure, Graphics requires as much sup-
port as supercomputing or parallel architectures, but may not get it directly. Many of the sciences
and engineering departments have received adeqguate laboratory resources and statistics must be
added to the list. The need for and trend towards graphics can not be altered, but we can work on
improving preseatation quality and effctivencss, such as Bill Cleveland (1985) and others have
been attempting to evaluate. Statisticians have contributed much to the burgeoning field of
“scientific visualization,” but it is computer sclentists who have dominated the funding in the ficld.
A closer working relationship to the fleids of application is already occurring but more should be
expected. Finally, examples of figures shown in the original talk may be found in the refercnces
below.
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ABSTRACT

The standard U.S. Army desert camoullage uniformappears dark against U.S, and Saudi
Arabian desert backgrounds. Prototype uniforms were developed and evalue ted in the desert
Southwest in 1986. Test results led to further evaluation, in 1987, of seven n. » uniforms, plus
the standard uniform, Uniforms were shown in all possible pairs, at ten sit .s, to U.S. Marinc
Corps and Fort Belvoir personnel, who served as ground observers. The uniforms were judged
on their ability to blend with the background. The best of sach pair was independently
selected. Ananalysis of variance and Duncan’s Multiple-Range Test statistics were performed.
It was determined for most sites, and across all sites, that three new uniforms were
significantly (@ < 0.05) best in blending with the background.

1.0 SECTION | - INTRODUCTION

The standard U.S. Army desert camouflage uniform is made in a pattern consisting of
six colors, The predominant color areas are tan, khaki, light brown, and dark brown, Small
light-brown areas outlined in black are scattered throughout the other color areas, This
uniform was taken to Saudi Arabin in 1980, and viewed against multiple desert backgrounds.
In all cases the uniform appeared dark and did not blend well with any of the observed desert
backgrounds. This information was given to counter-surveillance personnel at Natick RD&E
Center, MA, A series of seven prototype desert uniforms was then made and given to Fort
Belvoir for a desert evaluation in 1986, Analysis of this data ! identified uniforms 4, 5, and
6 as being the most effective in terms of blending with the U.S. desert test sites investigated.

Using the additional test information collected by Belvoir as a basis, Natick then
developed uniforms 8, 9, 10, and 11 fcor Curther evaluation., These uniforms, along with
uniforms 4, §, and 6 and the standard US. Army uniform, igentified as uniform [, were
evaluated in the U.S. desert Southwest in 1987, The quantitative analysis of their ability to
blend with various Southwest desert backgrounds is the subject of this report.

2.0 SECTION 2 - PROCEDURE
2.1 Test Uniforms

A total of cight camouflage uniforms were cvaluated. The following is a description
of each uniform:

¢ Uniform m1--Standard U. 5. Army Desert Day Camouflage Pattern

A six-color pattern now in usc by the U.S. military consisting of the colors Light Tan
379*, Tan 380% Light Brown 33!* Dark Brown 382* Black 383* and Khaki 384*

¢ Uniform #4
A threc-color pattern of Light Tan 379* Khnki 384* and Light Brown 381*,




¢ Uniform #=§
A three-color pattern of Light Tan 379*, Tan 380*, and Khaki 384*,

¢ Uniform #6
A three-color pattern of Desert Tan 459*, Khaki 384*, and Light Brown 381*,

¢ Uniform =8
A solid-color uniform of Tan 380*.

¢ Uniform =9
A solid-color uniform of Khaki 384*,

¢ Uniform »i0
A three-color pattern of Khaki 384* brown** and sand**.

¢ Uniform wll
A two-color pattern of clay** and Khaki 384*,

*Natick numerical color designations
**No numbers assigned

2.2 Test Sites

A total of ten sites were selected for the study. All the desert sites contained sparse
vegetation similar to that found in areas of interest in the Middle East, The soil ranged in
color from a light buff/tan to gray and dark brown, and represented a good cross-sectional
spectrum of different-colored desert backgrounds, The order of the ten sites as they will
appear throughout this study is seen in Table i,

Table t
Site Order Identification

Site w Color Location

] Buff Yuma Sand Dunes, AZ

2 Light Gray Ogilby Road, Tumco, CA

3 Very Light Tan Yuma Proving Grounds, AZ
4 Duatk Beige Tan Anza Borrego State Park, CA
5 Light Tan Tank Trail, 29 Palms, CA

6 Dark Tan Salton Sea, CA

7 Beige Tan Anza Borrego State Park, CA
8 Light Beige Tan Anza Borrego State Park, CA
9 ) Tan Jean Dry Lake Bed, NV

10 Gray Tan Rt. 18, Baker, CA

2.3 Test Subjects

The test subjects consisted of U.S. Marine Corps enlisted men from Camp Pendleton,
CA, and civilians from the U.S. Army Natick Research, Development, and Engineering Center,
Natick, MA, and the U.S, Army Belvoir Research, Development, and Engineering Center, Fort
Belvoir, VA. A maximum of 15 observers to a minimum of 10 observers were used at each test
site. All subjects had at least a corrected visual acuity of 20/30 and normal color vision,

2.4 Data Generation

The eight uniforms were viewed, individually, in all possible pairs (28). The viewing
distance from the subject to cach pair of uniforms was about 25 meters, The observers were




told to select the one uniform from each pair that best matched or blended with the
surrounding background in terms of color. The observers were instructed to discount
shrubbery if present. This instruction was necessary, because of the very sparse shrubbery in
the deserts of the Middle East when compared with the U.S, desert Southwest, The mecan
preference with associated stgfxdard error, 95% confidence intervals, analysis of variance,
and Duncan’s Multiple-Range® were calculated for all sites, and averaged across all ten sites.
The higher the mean preference, the more preferred the colors were rated by the ground
observers as blending with the desert background.

3.0 SECTION 3 - RESULTS

The camouflage uniforms were evaluated at ¢ach of the ten sites to determine which
colors best blended with the desert environment, Section 2.4 describes how the data was
generated for all sites, and when averaged across all sites. Table 2 shows the uniforms that
best blended with cach site and when avernged across all sites,

Table 2
Summary of the Best Desert Uniforms for Each Slte
In Ability to Blend with the Background

Uniforms
1 4 5 6 8 9 10 11
Site | X X
Site 2 X X X X
Site 3 X X X X X
Site 4 X X X
Site § X X
Site 6 X X X X
Site 7 X X X
Site 8 X X
Site 9 X X X
Site 10 X X X
Across All
Sites X X X

The statistical results of each site for the above best camoufluge uniforms will not be
included, because they would be too voluminous to present in these praceedings. This data is
available upon request from the U.S. Army Belvoir Research, Development and Engincering
Center, ATTN: STRBE-JDA, Fort Belvoir, VA 22060, Table 3 containg the menn preference
with associnted standard crror and 95% confiderce interval for the ability of the desert
unilorms to blend with the background, when averaged ucross all sites. Figure 1 Is the graphic
display of Table 3. Table 4 is the analysis of variance performed to determine if' there arc
significant differcnces between the various camoufllage uniforms in their ability to blend with
the desert backgrouncs., Table 5 identifies which uniforms differ from each other through the
Duncan’s Multiple-Range Test,



Table 3
Mean Preference Rating for Desert Background Blend
and 95-Percent Confidence Intervals (Across All Sites)

Standard 95% Confidence Interval
Unliform N Mean Error Lower Limit  Upper Limit
| 116 0.8190 0.0761 0.6683 to 0.9696
4 116 4,3966 0.1266 4.1458 to 4.6473
5 116 4.7845 0.1340 4.5190 to 5.0500
6 116 2.5345 0.1725 2,1928 to 2.8761
8 116 4.5000 0.1197 4.2630 to 4,7370
9 116 09397 0.0902 0.7610 to 1.1184
10 116 39655 0.1278 3.7124 to 4,2187
11 116 3.6466 0.1878 3.2745 to 40186
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Filgure 1
Desert Camouflage Uniform Abllity to Blend with the Desert Background,
Means, and 95-Percent Confldence Intervals (Across All Sites)

Table 4
Analysis of Variance for the Ability of the Camouflage
Uniforms to Blend with the Desert Background (Across All Sites)

Degrees of Sum of

Source Freedom Squares Mean Square F-Test Level
Uniforms 7 2046.1379 292.3054 140,4009  0.0000*
Error 920 19135.3793 20819

Total 927 3961.5172

Bartlett's Test for Homogeneous Varlance
Number Degrees of Freedom = 7
F = 1923 Significance Level = 0.000**

*Significant at a less than 0.001 level
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Table 4 indicate. .hat therc are significant differences in the ability of the camouflage
uniforms to blend with the desert background. The Bartlett’s Test indicates that the variance
for cach uniform is not homogeneous, i.c., significantly different, so they are not necessarily
from the same population.
Table 5
Duncan’s Multiple-Range Test
for All Sites Combined, Daylight

BEST | UNIFORM 4 UNIFORM 8 UNIFORM 5
4.3966 4.5000 4.7845
2 UNIFORM 11 UNIFORM 10
3.6466 3.9655
3 UNIFORM 6
2.5345
WORST 4 UNIFORM 1| UNIFORM 9
0.8190 0.9397

4.0 SECTION 4 - DISCUSSION

A review of the data [or sites 1-10, and for all sites combined, shows that camouflage
uniforms 4, 5, and 8 were the most effective in blending with the desert terrain. These
uniforms had mean blending values of 4.3966, 4.7845, and 4.5000 respectively (Tables 3 and
5). With the exception of site 5 (Table 2), where camouflage uniforms 6 and 10 were judged
as best blending with the desert background, uniforms 4, 5, and 8 had at least onc member
among those that blended best with the desert background. The overall mean-blending valucs
for the uniforms do not differ significantly from cach other (Table 5 and Figurc 1)
Additional review of the data indicates that the standard camouflage uniform (1) and
uniform 9 had the worst blend with the descrt background, when averaged across all sites.

The data for this study appears fairly clean; however, one large and pressing caveat
must be taken into consideration, before any f{inal decision on desert uniforms is made. The
uniform tests conducted so far have been in the U.S. desert Southwest. Any futurc conflicts
in which a descrt camouflage uniform will be used by U.S. forces will, in all probability, be
in the Middlc East. These deserts tend to be lighter and more tan than the grayer descrt of the
United States. They also have much less vegetation. The best camouflage uniforms 'rom this
study should be cvaluated in the arcas of intcrest in the Middle East for {inal determination
as to color blend with the background. The resulting data may necessitate color modifications
of thc uniforms to cnsurc that the best possible blend with the deserts of interest is achicved.

5.0 SECTION 5 - SUMMARY AND CONCLUSIONS

A total of cight camouflage uniforms were evaluated as to their ability to blend with
descrt backgrounds in the U.S. desert Southwest. Ten sites were used. The uniforms were
viewed in all possible pairs (28), and with the onc sclected from cach pair that blended best
with the background. The results of this evaluation produced the following conclusions:

a. Camouflage uniforms 4, 5, and 8 blended best with the U.S. desert backgrounds.

b. Standard camouflage uniform | and prototypc uniform 9 were the least ef fective
in blending with the U.S, desert backgrounds.

¢. Anadditional descrt camouflage cvaluation should be conducted in the Middle East.
to cnsurc that the best uniform is sclected for the U.S. military.

N
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HAS VARIABILITY BEEN REDUCED?

Gary Aasheim
U.5. Army Armament, Munitions and Chemical Command
Product Assurance and Test Directorate
Tool and Equipment/Aircratt Armament Branch
Rock Island, Illinois 6812909-6000

Often changes are made in meaguring methods and in production methods
with at best, only checks to determine whether or not the changes affected
variability., After a chunge is made, & natural question is - Did the
change affect measurement precision or product uniformity?

I am not aware of an eatablighed method for analyzing before and
after mample results to andwer that question for all situations., Of
course, if the before and after change samples are from the same
population, the standard F-test can be used.

But sometimes the before-change samples are from one sat of
populations and the atter-change samples are f{rom a different set of
populations.

One method for dealing with this situation ls to compare the pooled
before change variance with the pooled after change variance uaing an
F-test., However, if one or both sets of populations are hetercszcedastic,
this method seems to be of marginal soundnesg. What are some possible
approaches for dealing with this latter situation?




WHICH DISTRIBUTION APPLIES?

Gary Aasheim
U.S. Army Armament, Munitions and Chemical Command
Product Assurance and Test Directorate
Tool and Equipment/Aircraft Armament Branch
Rock Island, Illinois 61299-6000

1. Faced with the questions - do the sample measurements support the
customer’'s belief that a given dimensional requirement was not met to the
degree required by the contract, and, if not, what dimensional
requirements could be met to the required degree? - a co-worker of mine
took the 60 sets of 20 readings (see below) and checked for normality by:

a. transforming the readings in each set by dividing each difference,
reading minus set sample average, by the set sample standard deviation.

b. treating the 1200 transformed readings as a single sample of 1200.

c. tinding the average, standard deviation, skewness and kurtosis of the
transformed readings, plus the standard deviations of the latter two
statistics based upon the assumption that the 1200 readings were from a
normally distributed population.

d. breaking the transformed readings by size into 26 groups and running
a chi-square goodness-of-fit test where the expected values were based
upon the normal distribution.

2. Two considerations drove the transforming and pooling efforts above.
First, running 60 tests for normality would have taken more time and work
than the approach taken. Second, when my co-worker gained an initial
acquaintance with the data by computing sample averages and standard
deviations and by counting readings outside the dimensional requirements,
he did not spot any obviously atypical readings and, so, felt that an
assumption of a s:ngle underlying statistical distribution with difierent
parameters for different populations was reasonable.

3. 1Is there a better approach than that used by my co-worker?

Preceding Page Blank
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STATISTICALLY BASED MATERIAL PROPERTIES

bDonald M. Neal and Mark G. Vangel
U.S. Army Materials Technology Laboratory, SLCMT=MRS
Watertown, Massachusetts 02172-0001

ABSTRACT

This paper describes statistical procedures and their importance
in obtaining composite material property values in designing struc-
tures for aircraft and military combat systems. The property value is
such that the strength exceeds this value with a prescribed probabil-
ity with 95% confidence in the assertion. The survival probabilities
are the 99th percentile and 90th percentile for the A and B basis
values respectively. The basis values for strain to failure measure-
ments are defined in a similar manner. The B valus is the primary
concern of this paper.

INTRODUCTION

Many traditional structural materials, which are homogeneous and
isotropic, differ from composite materials which have extensive
intrinsic statistical variability in many material properties. This
variability, particularly important to strength properties, is due not
only to inhomogeneity and anisotropy, but also to the basic brittle-
ness of many matrices and most fibers and to the potential for prop-
erty mismatch Hetween the components. Because of this inherent sta-
tistical variability, careful statistical analysis of composite mate-
rial properties is not only more important but i{s also more complex
than for traditional structures.

This paper addresses this issue by discussing the methodologies
and their sequence of applications for obtaining statistical material
property values (basis values). A more detailed analysis showing the
various operations required for computation of the basis value is
presented by the authors in the statistics chapter of the MIL-17 Hand-
book (ref. 1). The procedures in this handbook required substantial
research efforts in order to accommodate various requirements (eg.
small samples, batch to batch variability, and tolerance limits) for
obtaining the basis values. Guidance in selection of the methodology
came from the needs of the military, aircraft industry, and the Fed-
eral Aviation Administration (FAA). Some of the procedures include
determination of outliers, selection of statistical models, tests for
batch to batch variation, single and multi-batch models for basis
value computation and nonparametric methods. In figure 1, a flowchart
is shown outlining the sequence of operations.
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An important application of the basis property value is to the
design of composite aircraft structures where a design allowable is
developed from this value., The process usually involves a reduction
in the basis values in order to represent a specific application of
the composite material in a structure (for example, a structure with a
bolt hole for a particular test and environmental condition). One
common approach in the design process requires the design allowable be
divided by the maximum applied stress or strain and the result to be
groater than one. The basis value is also used in qualifying new
composite material systems to be used in the manufacture of aircraft.
In this case, the values are obtained from an extensive test matrix
including both loading and environmental conditions. The value also
provides guidance in selecting material systems for specific design
requirements.

The paper also shows how material strength variability and the
number of test specimens can effect the determination of relliability
numbers. Methods are presented for obtaining protection against this
situation by providing a tolerance limit value on a stress correspond-
ing to a high reliability. A comparison between deterministic and
statistical reliability estimates demonstrates the inadequacy of the
deterministic approach. A case study is presented describing the
recommended procedures outlined in the MIL-17 Handbook for determining
statistically based material property valuea.

RELIABILITY ESTIMATES

Sample Size - Variability

The importance of determining a tolerance limit on a percentile
value is granhically displayed in figures 2 and 3. The cumulative
distributicn function (CDF) of the standard normal (mean equals 0,
standard deviation 1) is plotted for sample sizes of 10 and 50, using
25 randomly selected sets of data. 1In figure 2, for n equals 10, the
spread in the percentile is 2,1 for the 10th percentile. In figure 3,
for n equals 50, the spread 1s .7 for the same percentile. The
results show the relative uncertainty asgsociated with small sample
sizes when computing reliability values., The range in the percentile
can also depend on the amount of variability in the data (i.e., the
variance) .

Often in structural design, a design allowable value is obtained
from the basis value. A design allowable is an experimentally deter-
mined acceptable stress value for a material (called an allowable
stress). The allowable is a function of the material basis value,
layup, damage tolerance, open holes, and other factors., It is usually
numerically determined for some critical stress region located within
the structure. In using the allowable it is required that the criti-
cal stress be iess than a proportion (margin of safety) of the allowa-
ble stress value. Determining a property value from only 10 strength
tests using 90% rel ability estimates without confidence in the asser-
tion could result in a nonconservative design situation. In order to
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prevent this occurrence and provide a guarantee of the reliability
value, a tolerance limit (i.e. a lower confidence bound) on the per-
centile is recommended., The MIL-17 Handbook statistics chapter
doncribo: methods for obtaining basis values for a prescribed toler-
ance limit.

Definition of the B-Basis Value

The B~basis value is a random variable wheére an observed basis
value from a sample (data set) will be less than the 1l0th percentile
of the population with a probability of .95, In figures 4 and 5 a
graphical display is shown of the basis value probability density
functions for random samples of n equals 10 and 50 reapectively.
Samples are from the same population as in figures 2 and 3. The
vertical dotted lines represent the location of the population 10th
percentile (X )+ The probability denaity function of the population
is also displ&}gd in the figures. Note that 95% of the time the basis
value is less than X 0° The graphical display of the basis value
density function showl much less dispersion for n equals 50 than for n
equals 10; therefore, small sample sizes often result in very conser-
vative estimates of the basis value.

STATISTICAL METHODS - MATERIAL PROPERTY VALUES

Flowchart Guidelines

Since the statistical procedures and the flowchart (figure 1)
have been published in the MIL=-17 Hundbook (ref. 1) and (ref. 2), this
paper will only present a brief description of the methods, their
purpose, interpretation of results, and the need for following the
order of application suggested by the flowchart, The authors have
written a computer code which performs the necessary computations for
obtaining the basis values as described in the flowchart. The code is
available on a diskette, which can be used on various computers
including PC's that are IBM compatible. Both the executable and
gource code are on the diskette., This code is available free of
charge from the authors. The flowchart capability was tested by
applying the recommended procedures using both real and eimulated data
sets, The results of the simulations showed at least 95% of computed
values were less than the known 108 point, this is consistent with the
definitions of 'B'~basis value, see also (refs. 1 and 2).

The flowchart has two directions of operations, one is for the
single batch (sample), and the other is for the multi-batch case. A
batch could represent specimens made from a manufactured sheet of
composite material representing a roll of prepreg material. Published
MIL-17 Handbook basis values are usually obtained from five batches of
six specimens each.

Initially, let us assume the user of the flowchart has only a
single batch or more than one batch but that the batches can be pooled
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so that a single sample analysis can be applied. The first operation
(see figure 1) is to determine if outliers exist in the data set. A
more detailed discussion of outlier detection schemes and applications
are published in ref. 3. The method selected is called the Maximum
Normed Residual (MNR) procedure (ref. 4) and is published in the
MIL~17 Handbook. It is simple to apply and performs reasonably well
even though it assumes that the data is from a symmetric . distribution.
Th: analyais requires obtaining an ordered array of normed residuals
written as

NRi = (xi - ;)/S, i=1"..n (1)

where X is the mean, s is the standard deviation (SD), and n is the
sample size. If the maximum absolute value of NR, (MNR) is less than
some critical value (CV) (see refs. 1 and 2), theﬁ no outliers exist.
If MNR is greater than CV, then an outlier X is determined from the
largest NRi value,

Outlying test results are substantially different from the pri-
mary data. For example, assume that the data set contains 16 strength
values and 15 range from 150 to 200 KSI while the other is 80 KRSI.

The MNR method would identify the 80 KSI value to be an outlier, The
80 KSI specimen should be examined for problems in fabrication and
testing. 1If a rationale is determined for rejecting this test result,
then do not include the outlying test value in the data set when
obtaining the basis value. If there is no rationale for rejection,
the outlier should remain unless the test engineer bslieves that a
non=-detectable error exists.

It is important to identify the existence of outliers but also of
equal importance to resist removing the values unless a rationale has
been established. Leaving in or arbitrary removal of outlying values
can adversely effect the statistical model selection process and
conseguently the basis value computation. An outlier in a data set
will usually result in a larger variance and a possible shift in the
mean when compared with the same data without the outlier, The amount
of shift and the variance increase depends on the severity of the
outlier (distance removed from the primary data set). It is suggested
that for small samples (n is less than 20) critical values correspond-
ing to a 10% significance level be used (see refs. 1 and 2) in order
to identify outlying values. If the sample is greater than 20, then
use the 5% level. It is often difficult to test for outliers when
there is a limited amount of data; therefore, the 108 level will
provide additional power to detect outliers. This level will also
result in more chance of incorrectly identifying outliers. Outliers
can be incorrectly identified from data sets with highly skewed dis-
tributions; therefore, it is suggested the box-plot method (refs. 1
and 3) be applied for determining outliers in this situation.




Goodness of Fit Test - Distribution Function

Referring to figure 1, the next step is to identify an acceptable
model for representing the data. In the order of preference the three
candidate models are Weibull, normal, and the nonparametric method.
The Weibull model is

Fw(x) = 1 - exp[-(x/q)B] » Where (2)

X is greater than 0, o is the scale parameter, and 8 is the shape
parameler, is considered first in the ordering of the test procedures.
The Anderson-Darling (AD) goodness-of-fit test statistic (refs, 1 and
5), is suggested for identifying the model because it emphasizes
discrepancies in the tail regions between the cumulative distribution
function of the data and the cumulative distribution function of the
model. This is more desirable than evaluating the distributional
agsumptions near the mean since reliability estimates are usually
measured in the tail regions. The Anderson=Darling test statistic and
the observed significance levels computations are described in refs. 1l
and 2. Example problems are also shown in ref, 1, demonstrating
computational procedures for applying the AD method.

In following the flowchart, if the Weibull model hasn't been
accepted as a desired model, then a test for the normal distribution
is suggested,

F(x)=———i7—1 fx (t=-u)%/20%)d
N o(2m) ) exp(-(t-u)“/20°)dt (3)

where 4 is the mean, and 02 is the variance. The AD test for the
normal model is similar to the test for the Weibull. The procedure
used to identify the normal model is also in refs. 1 and 2., It should
be noted that for small samples reliable identification of a model to
represent the data is difficult unless some prior information of the
population is known.

If the Weibull and normal models are rejected, then a nonparamet-
ric method can be used to compute the basis value (see flowchart).
This method does not assume any parametric distribution as described
above. Therefore, model identification is not required, although
application of the method can often result in overly conservative
estimates for the basis value.

The conventional nonparametric method (ref. 6) requires a minimum
of 29 values in order to obtain a 'B'~basis value, and 300 are needed
for the 'A'-basis number. This paper presents a method for obtaining
'A' and 'B' basis values for any sample size. The method is a modifi-
cation of the ref. 7 procedure involving the ordered data values
arranged from least to largest with the basis value defined as

B = Xy = KiX(py = X))y (4)
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vhere x(r is rth ordered value and X is the first ordered number.
In refs: l and 2 tables for r and K v&l&es are tabulated for sample
sizes n, Note, in the case where 'A' values are required for small
sample sizes, it is suggested that nonparametric methods be applied
unless some prior information of the model is known., This is because
of the limited information available in the lower tail region of the
distribution, which can result in erronecus estimates of the reliabil=-
ity numbers. The 'A'-basis value is often used in design where a
single load path exists; therefore, it is essential that the value be
conservative.

Weibull Method - 'B'-Bagis Value

Returning to the sequence of operations as outlined in the flow-
chart, if the Weibull model is accepted, then determine the basis
value from the following relationship

A
B = dlln(1/py) 11 /P (5)

where 3 and 4 are maximum likelihood estimates of the shape 3 and

scale a of the Weibull distribution. That is, these sstimates maxi-
mize the likelihood function, which is the product of probability
densities (2) evaluated at each of the n data values. Tables for P, ,
as a function of the sample size n and the code for determining & aRdﬁ
are given in refs. 2 and 3.

Normal Method - 'B'-Basis

If the Weibull model was rejected and the normal model is an
acceptable representation of the data, then compute the¢ basis value as

a-'i-st (6)

where X and S are the mean and 8D, and KB is obtained from tables in
refs. 1 and 2.

PROCEDURES FOR MULTIPLE BATCHES

Anderson-Darling Test

If there are more than one batch of data being analyzed, then a
significance test is required in order to determine if the batches may
be pooled or if a multi~batch statistical analysis is to be applied
(see flowchart). Note, the outlier test is to be applied to pooled
data prior to testing. The recommended test is the K-Sample Anderson=-
Darling Test (refs. 1 and 8) which determines if batch to batch varia-
bility exists among the K batches. This test is similar to the AD
test for identifying acceptable statistical models for representing
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data. In the K sample case, raired comparisons are made for the
empirical CDF's while the other AD methods compare a parametric CDF
with an empirical CDF. 1In all cases, this comparison involves the
integration of the squared differenz¢ ¢f the CDF's weighted in the
tail region of the distribution. IBC K-sample AD is basically a two
sample test in that each sample (i~ batch) is individuall compaged
with the pooled K-1 other batches, repeated X times until each |
batch has been compared. The average of these K two-sample tests
determines the K-sample AD test statistic. Tables of critical values

and a detailed description of the method and its application is shown
in refs. l' 2, and 8,

If a significant difference is noted among the K batches, then,
as shown in the flowchart, a test for equality of variance is sug~
gested using a method in ref. 9. Application of the method, tables,
and the necessary relationships for computing the test statistic are
given in refs. 1 and 2. The variance test is suggested only as a
diagnostic tool, Sample test results that have large varlances rela-
tive to the other batches may identify possible problems in testing or
manufacturing of the specimens. Equality of variance is not required
when applying the Modified Lemon method, as discussed below, in the
multi-batch case. Although the Modified Lemon method is based on the
assumptions of equality of variance and normality, simulation results
have shown that these assumptions are not necessary. After testing
for equality variance, it is suggested that the basis value be
obtained from application of the Modified Lemon method (see figure 1).

The Modified Lemon Method

Composite materials typically exhibit considerable variability in
strength from batch to hatch. Because of this variabllity, one should
not indiscriminately pool data across batches and apply single batch
procedures. The K-sample Anderson-Darling test was introduced into
the MIL-17 Handbook in order to prevent the pooling of data in situa-
tions where significant variability exists between batches. For the
situation where the K-sample Anderson-Darling test indicates that
batches should remain distinect, a special basis value procedure has
been provided. This method, referred to as the 'ANOVA' or 'Modified
Lemon' method, will be discussed next. A detailed description for
applying the method is shown in refs. 1 and 2., For a discussion of
the underlying theory, see ref, 10, the original Lemon paper, and ref,
11, the Mee and Owen paper which modifies the Lemon method.

The Modified Lemon method considers each strength measurement to
be a sum of three parts. The first part is an unknown constant mean.
If one were to produce batches endlessly, breaking specimens from each
batch, the average of all of these measurements would approach this
unknown constant in the limit of infinitely many batches. Imagine,
however, that one were to test many specimens from a single batch.

The average strength approaches a constant in this situation as well,
but this constant will not be the same as for the case where each
specimen came from a different batch. The average converges to an
overall population mean (a 'grand mean') in the first case, while the
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average converges to the population mean for a particular batch in the
second case. The difference between the overall population mean and
the population mean for a particular batch is the second component of
a strength measurement. This difference is a random quantity - it
will vary from batch to batch in an unsystematic way. We assume that
this random variable has a normal distribution with a mean of zero and
some unknown variance which we refer to as the between batch component
of variance. Finally, in order to arrive at the value of a particular
strength measurement, we must add to the sum of the constant overall
mean and a random shift due to the present batch a third component.
This is another random component which differas for each specimen in
each batch, It represents variability about the batch mean. It also
is assumed to have a normal distribution with a mean of zero and an
unknow? variance, which is referred to as the 'within batch' component
of variance.

The 'Modified Lemon' method uses the data from several batches to
determine a material basis property value which provides 95% confi-
dence on the appropriate percentile of a randomly chosen observation
from a randomly chosen future batch. This basis property provides
protection against the possibility of batch-to-batch variability
resulting in future batches which have lower mean strength than those
batches for which data are available.

To see what this means, imagine that several batches have been
tested and that this statistical procedure has been applied to provide
a 'B'=basis value. Now, imagine that you were to get another batch
and test a specimen from it. After this you obtained still another
batch and tested a specimen from it. If you were to repeat this
process for infinitely many future batches, you would obtain a distri-
bution of strength measurements corresponding to a randomly chosen
measurement from a random batch. You can be 95% certain that the
basis value which you calculated originally is less than the tenth
percentile of this hypothetical population of futurs measurements.,
This is the primary reason why the Modified Lemon method is advocated
by the MIL-17 Handbook =~ it provides protection against variability
between batches which will be made in the future through the use of
data which is presently available.

An illustrative example of this method applied to nine batches of
material is shown below. The data sets did not pass the K-sample AD
test for pooling. Let the batches be

1 2 3 4 5 6 7 8 9
61.3 66.5 66.0 61.9 68.9 75.8 72.8 71.9 68.7
68.5 64.7 72.7 68.0 65.0 75.2 75.0 71.0 76.3

62.5 64.9 67.1 63.3 70.9 71.5° 66.3 69.5 76.6
66.0 65.2 67.7 74.6 65.4 69.6 69.5 69.5 66.2
66.6 70.3 65.7 66

o2 66.5 66.1 71. 72. 72.4
64.8 68.2 64.9 74.6 72.8
69.5 69.1 109.6
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with a single outlier, 109.6 determined from MNR method. Let's assume
109.6 was an incorrect test result and replaced by 69.6, a corrected
test value,

After a substantial amount of computation (see refs. 1 and 2)
involving sums of squares, within batch and between batch variances,
non-central t distribution, etc., the 'B'«basis value is

'‘B' = 60,93

The summary statistics are

Batch ny ii 84
1 7 65.60 2.99
2 5 66.32 2.33
3 5 67.84 2.84
4 7 §7.33 4.17
5 6 66.93 2.45
6 5 71.64 4.03
7 5 71.10 3,33
8 6 71,52 1.96
9 7 71.80 3.88

It should be noted the value of 60.93 is lower than 61.9 of nonpara=-
metric solution from the pooled sample. The Modified Lemon method can
be overly conservative (low besis values) in order to guarantee 90%
reliabllity with 95% confidence. The number of batches and the varia-
bility between and within the batches effect the computation of the
basis value. 1f there are few batches and large between batch varia-
bility with small within batch variability, then this situation could
result in very low basis numbers depending on the amount of variabil-
ity and number of batches,

In figure 6 results from application of flowchart procedures are
shown for three batches of five specimens of AS4,/Epoxy material tested
in compression. 1In this case, the mean strength values show a small
amount of variability while there is a relatively large spread within
each data set. 'B'~basis results from the flowchart application are
for the following: ANOVA (Modified Lemon), Welbull, Normal, Lognor-
mal, and nonparametric methods. Not included in the flowchart results
are a list of assumptions that were violated. The results show a
small difference in basias values except for the nonparametric solution
which has the low value of 167.1., The Weibull method was suggested
since it passed the K-sample AD test and the AD goodness-of-fit test,
The relatively large within batch variances and small differences in
mean values made it possible to pool the batches.

Figure 7 shows another result of computing the 'B'=~basis values
using the ANOVA, Weibull, and normal methods applied to another three
selected batches from same population as in figure 6. The ANOVA
result of 15.7 KSI is substantially lower than those from the other
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two methods. Unfortunately, this is a result of a large difference in
mean values preventing pooling of the batches resulting in the
required ANOVA application. The large difference in mean values in
addition to relatively small within batch variability resul'ted in this
extremely low basis value. A 'B' value of 6.5 was obtained from the
simple normal analysis using the three mean values. The result shows
that for this example the ANOVA method primarily depends on the batch
means., The above results would suggest obtaining more batches or
investigating testing and processing procedures.

In figure 8, results are shown for the case of randomly selecting
another batch from the same population described in figure 7. 1In this
case the ANOVA result shows a value of 105.4 KSI1 which is substan-
tially larger than the 15.7 KSI recorded for the three bhatches. The
importance in having a larger number of batches is shown from these
results in figures 7 and 8. Also, with more data available, the
pooled results for Weibull and Normal model also resulted in less
conservative values.

Figure 9 presents results showing where a substantial amount of
within batch data is not necessary. 1In case 1, the ANOVA results for
three batches of 100 data values each, resulted in 154.9 KSI while for
case 2, three batches of ten each, a 'B'-basis value of 152 KSI was
obtained. This result emphasizes the importance of being able to
obtain more batches rather than increasing the batch size. However,
the ANOVA results in figure 6 show three batches can provide reascna-
ble results similar to pooled results if small differences in mean
values relative to batch variances exist. Note that for very large
batch sizes, the K-sample AD test can reject pooling of data even
though there is a small difference in mean values, This rejection is
statistically correct, but the user of the flowchart may consider the
difference in the batch means not of engineering importance. In this
case the user can make the decision of pooling or not pooling, since
there will be a small difference in basis values from pooled or
unpooled results. If there are large batch differences and the ANOVA
method is suggested from the flowchart, then adding more batches can
reduce the conservatism. The ANOVA method is a random effects model
which determines a basis value representing all future values obtained
from the same material system and type of test. In order to provide
this guarantee in the presence of large batch to batch variability,
there is the potential for it to be overly conservative which was
shown in figure 7.

Reliability at Basis Stress Value

Figure 10 conceptually describes the statistical reliability of a
simple structure in tension as it relates to the 'B'-basis applied
stress value. In the example shown in the figure, ten percent of all
the specimens (structures) will fail when subjected to load S. This
statement should be incorrect at most one time in twenty (95% confi-
dence), S is the 'B'-basis value obtained from strength (failure
load) measurements from specimens of similar material and geometry.
This statistical guarantee that at most 10% of the specimens will fail



can provide the engineer with a quantitative number for selecting and
applying material in composite material structures. This is unlike
the conventional deterministic property value approach which is an ad
hoc Ttoccduro that reduces the mean strength measurements in order to
obtain some design value which can result in a potentially over or
under design situation. In applying the statistical basis value, it
is assumed the material, geometry, and loading conditions in the
structural design situation is similar to those obtained from the
strength measurements. This is also true for deterministic property
value applications. 1In the following sections the inadequacies of the
deterministic approach are discussed in more detail.

Reliability Values Statistical vs., Deterministic

In figure 11 the results of a simulation process involving the
random selection of ten values from population of 191 strength meas-
urements repeated 2,500 times are graphically displayed. For each
simulation a design number or_material ﬁpoporty value is obtained from
each of the three procedures X/2, (2/3) and the MIL-17 flowchart.
The mean value of the data set is x. The reliability values, as shown
in the figure, are obtained by evaluating the population probability
distribution fit to the 191 values at the design numbers.

In the case where the mean is reduced by a factor of 1/2, the
strength values are very low (90 KSI), and the reliability is
extremely high (1.0)., The engineer may not be able to afford such a
high reliability value of 1.0 (to twenty significant digits) at the
expense of having design values as low as 950 KSI when mean strength is
180 KSI. The factor of 2/3 increases the design value but reduces the
reliability to approximately .999. The flowchart 'B'=basis calcula-
tion provides higher strength values with acceptable reliability
numbers. The other two procedures show an element of uncertainty by
depending on the chosen factor. 1If the engineer used the factor of
1/2, this would result in an extremely over design situation require
either rejection of the material or the design. Alternatively, if the
engineer used the mean strength as design number, the reliability
would be reduced to .5, although strength values would be much higher,
The flowchart procedure removes the uncertainty by providing a guaran-
teed minimum reliability of .90 without unnecessarily reducing the
basis value. The minimum reliability can be increased to .99 if
necessary by using 'A'-basis computations as outlined in the MIL-17
Handbook.,

Effect of Variance on Reliability Estimates

In figure 12 the effects of variance differences as they relate
to reliability estimates are shown from a simulation process., This
involved randomly selecting ten values from each of two separate
normal distributions with same mean of 100 and different SD's of 5 and
25 repeated 2,500 times., The reliability values are obtained in a
similar manner as described in the previous section, except the proba~-
bility values were obtained from the normal distribution. 1In the case
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where the SD is 5, there is very little dispersion in the reliability
values., Again, the design number from X/2 is substantially lower than
the basis value using the flowchart process, although the reliability
is very high for this number. In comparing this with the results
using SD of 25, a substantial increase dispersion of the reliability
values particularly for the basis results using flowchart methods.
The flowchart results show similar reliability estimates for both SD's
of 5 and 25, although for the X/2 the reliability has been reduced
substantially from twelve nines to .96. This is the result of the
deterministic (X/2) approach being independent of variance. This is
not an issue if 50% reliability is required, but for 90% reliability,
variability is important. Dividing the mean by two can be nonconser-
vative for situation when the distribution has a large spread (long
tail)., 1In order to make adjustment for this situation, the flowchart
method (basis value) is suggested. See results in the figure where
the basis value adjusts to a lower level but maintains the same range
for the reliability estimates. The basis value will guarantee a
reliability by adjusting the design value while the safety factor
apprnach cannot guarantee reliability. This result suggests using the
basis method if it is important to maintain a certain level of relia-
bility. The overall issue is that the flowchart methods will provide
property values with specified reliability with 95% confidence while
the deterministic approach is an ad hoc approach with no control of
the resulting reliability estimates.

CONCLUSIONS

This paper is an exposition of the statistical procedures
described in the MIL-17 Handbook for obtaining material property
values, Its primary goal was to introduce the MIL-17 statistics
chapter to the users so that they may use it more effectively. The
methods and the sequence of operations suggested by the statistics
chapter flowchart were analyzed with respect to their effectiveness,
purpose, and limitations. By following the flowchart procedures,
guidance is provided to the user so that reasonably accurate property
values may be obtained without relying on ad hoc schemes which could
potentially result in either excessively low or high values,

Each method and its order of application were discussed with
respect to their specific purpose, such as model identification, batch
to batch variability recognition, outlier detection, and the basis
value computation. There are situations where low basis values will
result, not because of limitations in the statistical procedures but
are usually the result of very large or small date sets, large batch
to batch variations, or model recognition.

The comparison between the statistical reliability and the deter-
ministic approach showed a preference for statistics since it was able
to guarantee a specified reliability in contrast to a deterministic
method which is primarily an ad hoc process resulting in considerable
uncertainty as to the corresponding reliability estimates. Finally,
the authors have attempted to provide a satisfactory definition of a
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statistically based material property value by introducing the toler-
ance limit concept and its importance. A number of illustrations were

presented showing the advantage of the tolerance limit over the deter-
ministic approach.
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FIGURES 2 AND 3 SAMPLE SIZE EFFECT ON RELIABILITY

Random data sets of size n from a Normalr distribution.
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FIGURES 4 AND 5 BASIS VALUE PROB. DENSITY FUNC.
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FIGURE 12 RELIABILITY / STRENGTH COMPARISON:
A CASE STUDY - STAT. VS DETERMINISTIC
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STATISTICAL CULTURE: PROMOTING THE PRACTICE OF STATISTICS

Emanuel Parzen

Department of Statistics, Texas A&M University

Abstract

This paper proposes a framework, called Statistical Culture, for studying the practice
of statistics with the aim of improving the health of statistical science as measured by how
well citizens and scientists use it as a tool in their daily life and research. We identify
a paradigm for lifelong leaming.based on identifying five (parallel, non-hierarchial) levels
of statistical literacy: consumer, applier, consultant, collaborator, theorist. We support
accreditation of statistical literacy. V+'= make recommendations for how statisticians can
promote public recognition of the impo:tance of statistics, statistical literacy, and interac-
tion between researchers and statisticians. We propose “solutions” to the use of statistics as
a scientific method by research which aims to unify and guide thinking about the diversity
of statistical methods and theories.

Contents: Statistical Culture as a Paradigm for Lifelong Learning, Solutions, Prob-
lems, Levels, Excellence, Statistical Culture Levels Theorem, Olkin-Sacks Report, Statis-

tical Culture Applications Theorem, Statistical Culture Research Problems.

KEYWORDS: Foundations, Teaching, Statistical Literacy, Statistical Science, Unification
of Statistical Methods, Statistical Culture.
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STATISTICAL CULTURE: PROMOTING THE PRACTICE OF STATISTICS
Emanuel Parzen

Department of Statistics, Texas A&M University

STATISTICAL CULTURE AS A PARADIGM FOR LIFE LONG LEARNING: The
health of a society is becoming increasingly dependent on its statistical literacy, and how
statistics is practiced. Modern society is data-rich and has an ever-increasing need to
understand how data becomes information (useable knowledge). The goal of continuous
improvements of quality of processes involved in the delivery of products or services requires
that decisions be based on the information in data, not just on opinions or guesses: this is
the main recommendation of the philosophy of Ed Deming (see Mann (1988), p. 15).

This paper proposes that the practice of statistics at any of its levelt should be a lifelong
endeavor characterized by the features that are being advocated as the requirements of
paradigms for lifelong learning tl}&t will be required in the 21st century (according to John
Sculley (1989), p. 10587):

o “It should require rigorous mastery of subject matter under expert guidance.

o It should hone the conceptual skills that wrest meaning from data.

o It should promote a healthy skepticism that tests reality against multiple points
of view,

o It should nourish individual creativity and encourage exploration.

o It should support collaboration.

s It should reward clear communciation,

o It should provoke a journey of discovery.

o And above all it should be energized by the opportunity to contribute to the total
of what we know and what we can do.”

The study of how to achieve the lifeiong learning process required for the practica of
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statistics is called “statistical culture,”
This paper seeks to show the important role of “statistical culture” in the practice of
statistics. It supports the concept of accreditation of statistical literacy at various levels.
The challenge for statistical education wili be to find ways of bringing to the process

of instruction the passion for discovery that drives excellent statistical thinking,

SOLUTIONS: Statistical culture (the study of the practice of statistics) has goals
of elegance and utility. The elegance of statistical culture is obvious; it enhances the
fun of doing statistics.The utility of the study of the culture of statistics is to motivate
statistical “stesrsmanship”, developing consensus about (and implementing) the actions
needed for continuously evaluating and improving the health of the discipline and profession
of statistica.

Statistical culture can be said to be the study of the maps (geography, current history)
of statistics, rather than its ancient history (as in the history of statistics up to 1900), It
is the study of the maps of statistics from the point of view of understanding its current

state of the art and influencing its future development.

Statistical culture can be defined to be the study of:
how statistics is, and ought to be, practiced;
where statistics has applications (see Table 1) and who Is doing the applying;
what to teach in statistics courses;
why statistics works;
when are competing probability models and statistical methods successful;
accreditation of statistical literacy (rather than competency) at various levels.

To promote the practice of statistics, statistical culture seeks:

1. To develop maps of statistical methods which will help applied statisticians to strive
for continuous improvement of methods, to learn new methods to consider as alter-

natives, to compare competing methods, to more confidently obtain conclusions from
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2.

3.

comparisons of the results of competing methods of statistical data analysis of data
of a certain type, to obtain problem-driven results from methods-driven results, to
obtain substantive conclusions from data for which prior substantive knowledge was

not available.

To develop maps of statistical theories which help theoretical statisticians to define
frontiers of research and thus understand the sense and purpose of research which

otherwise may seem unfocused and unmotivated.

To develop maps of the relations between statistics and other flelds of knowledge and
research which will help Interactions between statisticians and researchers in other

disciplines provide more recognition to the research contributions of statisticians.

. To develop maps of the contributions that statistical literacy and the practice of statis-

tics can make to a nation’s quality of life and world competitiveness,

To organize (each year, in each community) Statistical Science Awareness Days to

promote the practice of statistics and puElic recognition of outstanding statisticians,

Statiatical culture (which develops unifications, maps, frameworks) is urgently needed

in order to improve the image of statistics among scientists and professionals. It would

provide the ability to objectively recognize by suitable awards more statisticians as “out-

standing” contributors to the missions of their organizations as well as to the discipline

and the profession of statistics.

Unification of methods is one of the important facets of the use of the scientific method

in any fleld of research (and therefore, a fortiori, in statistics). Unification of statistical

methods does not prevent statisticians from using ad hoc solutions (which many claim is

their preferred approach) but rather encourages and guides such methods by clarifying

the methods available which may be chosen ad hoc; therefore the ultimate goal of research

(such as Parzen (1989)) on Grand Unifled Theories of Statistical Methods, denoted GUTS,

is “grand unified ad hockery”.
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PROBLEMS: Statisticians are increasingly aware that there are urgent problems in
the discipline and profession of statistics; we argue that problems can be solved if they are
discussed using scientific methods and a framework for the “culture” of statistical prac-
tice. Examples of such problems are: declining enrollment of statistics doctoral students,
difficulty of attracting young people into a career in statistics, teaching statistics to engi-
neers (Penzias (1989)), misunderstanding of the role of statisticians in quality control and
quality manufacturing (Hahn (1989)), expressions of dissatisfaction in the profession of
statistics about the appreciation and utilization of statisticians (Boroto and Zahn (1989)
and McPherson (1089)), failure of leading statisticians to continuously promote statistical
culture (to be providing leadership to the study of promoting the practice of statistics),
failure of many statisticians to be literate at appropriate levels in a diversiiy of statistical
methods (including time series analysis).

LEVELS: We believe that one can apply the scientific method to the study of statistical
culture (the investigation of how statistics is, and ought to be, practiced); answers to
such questions should not be based on prejudices but on a consensus of the philosophical
writings of successful statisticians, From recent literature about statistics (Bodmer (1985),
McPherson (1989)) one can conclude the following first step in drawing a map of the
practice of statistics (which we state below in more detail as the Statistical Culture Levels
Theorem).

The practice of statistics occurs at three levels of understanding and practice:

popular,

acience-related professionals, and

professional statisticians;

further the practice of statistics by statisticians can be divided into three levels:
consulting

collaboration

theory and methods.




EXCELLENCE: Statistical culture aims to provide a framework which stimulates
statisticians to understand and applaud each other’s work (indeed, there seems tn be too
much joy in “statistician bashing”); this may l:2 a general failing of human nature but it
seems to be an urgent problem for statistics. The use of the word “level” should not be
interpreted as implying : vertical or series structure, with activity in statistical theory at
the top. The levels form a horizontal or parallel structure; it cannot be emphasized enough
that the understanding required in each level involves different aspects of the practice and
methods of statistics. A possible analogy is the saying: “Use the talents you possess; for
the woods would be very silent if no birds sang except the best.”

St utistical culture does aim to support the search for excellence. Criteria should be
developed to rate good statistical practice as either average, superior, or exceptional; one

criterion is whether it is done at the level of “whut,” “how,” or “why”,

STATISTICAL CULTURE LEVELS THEOREM: CONSUMER, APPLIER,
CONSULTANT, COLLABORATION, THEORY AND METHODS DEVELOPMENT. To
promote the practice of statistics, w2 pro_cse that it is vseful to identify five levels of
practice, defined as follows.

1. Statistical consumer:

knows definitions of statistics;

appreciates the concept of variability (distribuiion of outcomes);

has the ability to understand statistical models and graphical presentations of data

analysis;

does not have a working knowledée of statistical methods or the ability to carry out

a statistical analysis;

appreciates the role of statisticians in the battle for statistical literacy (competence in

understanding, applying and advancinyg statistical reasoning).

Statisiical literacy at the consumer leve! can be defined to be knowing that public

46

T ' o -~




policy should be based on answers to the questions: “What can happen? What are the

odds (probabilities)? How do you know the odds?”

II. Statistical applier. Distinguish two levels:

II(A).

I1(B).

knows basic statistical methods used to determine and obtain needed information;
ability to use menu driven statistical computing packages; fits all problems into con-
venient routine statistical conceptualizations;

ability to use command driven statistical conputing environments;

understands the assumptions underlying statistical methods and can adapt statistical

methods to provide ad hoc methods for problems at hand;

Scientists and engineers involved ir research or development should be statistical appliers:

those that become more statistically self-sufficient can become more responsible to be their

own statistical consultants.

III, Statistical consultant:

skilled in transforming data into information;

has the ability to examine facts and serve as referees of statistical analyses;

aware of the most modern statistical methods;

not actively involved in the scientific language and perspective of the problems being
studied so that conversation between client or customer and consulting statistician is
less a dialogue and more a monologue;

requires abilities to interview clients to obtain an understanding of their problems,
and to communicate with clients by oral presentations and written reports;

often advised to use simple techniques for scientists unable to appreciate aubtleties of
statistics;

helps contribute to research on the consulting process.

. Statistical collaborator:

statistician is a collaborator on the project and is a catalyst and potential advocate of
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actions and directions to be pursued in the project;

collaborative research often (if not always) leads to jeint publications and/or joint
research grants;

has mathematical training adequate to understand the philosophy and vigor of statis-
tical methods but not completely the rigorous proof of their theory;

has ethical, administrative, and diplomatic skills, especially those required for large
scale and long term research projects;

helps contribute to research »n the collaboration process.

V. Statistical theorist:
inevitably mathematically well trained,
seeks to develop and teach the logical structure of statistical methods, to understand
how they are born and how they die, how they can be made to work better and why
they work;
basic research in ge‘neral methods that provide analogies between applications;
fundamental research in analogies between methods (patterns which general methods
share with other general methoda);
mathematical research on the properties of statistical methods can be considered an-

other level within the theory level.

OLKIN-SACKS 1988 REPORT: The distinction between consulting and collaboration

is based on how “equal” the statistician is regarded as a member of the research team. Olkin

and Sacks (1988) used the names “advisory collaboration” and “interactive collaboration”
(or Type A and Type B) for what we call “consulting” and “collaboration”. We quote the
report (p. 12):

“Typically, the statistician engaged in advisory work will adapt existing methodology
to the problem at hand and create computable versions of known techniques. Another

mode of collaboration is much more interactive in nature and involves work to develop
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novel techniques and methods to deal with broader substantive questions. This second
type of collaboration leads to research on statistical issues that may subsequently advance

knowledge both in the substantive field and in statistics itself.

“The survey responses indicated a high frequency of Type A research, while sounding
a common theme that Type B research does not receive sufficient time, money, or recog-
nition of its value. The short-run ‘advisory consultation’ rarely becomes the ‘long-range
interactive collaborﬁtion.’ Yet it is the interactive mode that has the greater potential to
break new ground and lead to statistical innovations of far-reaching significance for the
future conduct of science, and it is this type of collaboration that the panel feels must

receive the attention of the disciplines and of NSF and other funding agencies.”

STATISTICAL CULTURE APPLICATIONS THEOREM: Another map required to
guide the practice of statistics, called a Statistical Culture Applications Theorem, is given
in Table 1 which lists disciplines represented in cross-disciplinary research involving col-
laboration by faculty members in “statistics programs” in universities. The flelds and
percentages are vaguely adapted fr,m Table § of the Olkin-Sacks report. The conjectured
percentages are intended to motivate passsionate discussions (and, eventually, research).
An interesting research program is to investigate the proportion of new degrees in statistics

that take employment to apply statistics in each discipline listed in Table 1.

The interests of statisticians may also be studied by investigating the distribution of

1987 doctorates among broad fields of statistics (see Cox, Voytuk, and Hart (1989)):

Probability and Math Stat 143
Biometrics and Biostatistics 37
Psychometrics 9
Econometrics 25
Social Sciences Statistics 49

TOTAL 263




The racial/ethnic composition of mathematical doctorate degree recipients in the pe-

riod 1975 to 1986 was as follows:

White Black Hispanic Asian
Math Sciences, total 89.8% 1.4% 1.4% 7.1%
Prob & Math Stat 85.9% 1.5% 1.5% 10.9%

The percentage of degrees to foreign citizens is 40% in statistics and 45% in mathemat-
ics. The percentage of math-science doctorates working in education is 50% for statistics

and 60% for mathematics; 28% of statistics doctorates are university faculty members.
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Table 1: Disciplines Where Statistics is Applied
Disciplines Represented in Statistical (and Time Series Analysis)
Cross-Disciplinary Collaborative Research

(Conjectured Percentage of Statisticians in Universities Involved in Collaboration)

Health and Life Sciences (25%, 25%)
Medicine
Public Health and Epidemiology, Biostatistics
Biology -
Ecology
Flsheries and Wildlife
Environmental Sciences
Pharmacology and Toxiocology
Genetics
Entomology
Forest Science
Physiology

Engineering and Mathematical Sciences (15%)
Engineering
Computer Sciences
Operations Research and Rellability
Mathematics
Signal Processing
Image Analysis and Pattern Recognition
Industrial Statistics
Defense Statistical Standards
Hydrology

Behavioral and Social Sciences (15%)
Psychology, Cognitive Sciences
Economics, Econometrics
Education
Sociology
Political Science
Sample Survey
Government Statistics

Physical, Chemical, Earth and Atmospheric Sciences (10%)
Chemistry, Chemomaetrics
Geology, Geophysics
Physics, Astronomy,Chaos
Meteorology
Oceanography

Agriculture (4%)
Animal Science
Solls and Crop Sciences
Agricultural Economics
Veterinary Medicine
Food Science

Business Administration (4%)
Finance
Forecasting

Law (2%)
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STATISTICAL CULTURE RESEARCH PROBLEMS:

DEFINITIONS OF STATISTICS AND STATISTICAL SCIENCE. Is a suitable defini-
tion of statistics (which is similar to that of McPherson (1989), p. 224) “form expectations,
make observations, compare observations and expectations, continuously improve”? Is a
suituble definition of statistical science “the science of analyzing data by varying conditions
(probability models and estimation criteria) under which one analyzes a data set”? Note
that laboratory science learns about a phenomenon by varying the experiments éonducted

to generate observations about the phenomenon.

EFFECTIVENESS RANKING OF STATISTICS PROGRAMS: Statistics programs
in U, 8. universities are usually ranked by their contributions to research in statistical
methods and theory. Should they also be ranked by their effectiveness with regard to
their success in adding to the U. 8. work force new degree holders (bachelors, masters,
doctorates) who have received education to practice statistics at the various levels we
have identified? Should we regard as unsatisfactory the following current appropriate

proportions being produced on the average in the U, S.

consumers (pre-calculus course) 800/10000
consumers (post-calculus course) 200/10000
appliers 100/10000
consultants 10/10000
collaborators 4/10000
theorists . 2/10000

One category in which it is particularly urgent for siatistics programs to increase the
number of students is consumer (post-calculus) courses since this is the source which

suplies candidates for all other levels of statistical practice. Desirable goals for the fraction

of students in introductory courses who are taking a course with calculus prerequisite is




30%.

UNDERGRADUATE EDUCATION: Provide students with a grid of introductory
courses in statistics which introduce the elegance and utility of statistical thinking, meet
the needs for training at various levels of statistical literacy, are appropriate to students’
scientific interests and mathematical backgrounds, and meet the goals of training all work-
ers to become statistically literate at the consumer level, and many researchers to become
statistically literate at the applier level,

The television series “Against All Odds” provides excellent supplementary material
for undergraduate statistical education. An exposure to the methods and applications
discussed in “Against All Odds” can be defined to be a superior grade of statisticai literacy

at the consumer level.

GRADUATE EDUCATION: Design graduate education in statistics to successfully
provide training at each level of the practice of statistics, and which aducates graduate
students to have broad interests in applied, theoretical, and computational modern statis-
tics. Students should have available courses in statistical culture which expose them to
the role played by statistical methods in each of the disciplines listed in Table 1.

One of the important expected benefits of the study of statistical culture is to help
the development of communication, mutual respect and cooperation between statisticians
involved with various levels of practice of statistics. Graduate students in statistics come
from an extreme diversity of backgrounds. The study of statistical culture would actively
encourage them to communicate more with each other (as well as with their faculty) about
the expertise which they should acquire as students and also during their careers. Such
discussions should be part of the graduate curriculum in a first year course (which could
be called Statistical Forum or Statistical Culture) which would also help students decide

about whether they want a master’s or doctor’s degree.
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STATISTICS AND RELATED FIELDS: Identify the relations between statistics and
mathematics, between statistics and probability, between statistics and computing, and

between statistics and the design of scientific investigations,

STATISTICAL VITALITY: How much of the current vitality of statistics derives from
the avuilabililty of jobs in industrial statistics, biostatistics, and environmental statistics?
Further, how do these areas of application compare with regard to the comparative devel-

opment of the various levels of statistical practice?

THE URGENT NEED FOR MERGERS OF STATISTICIANS!

Statisticlans in the United Kingdom are currently calling for a more unified less con-
fusing public image of Statistics by merging the Royal Statistical Society and the Institute
of Statisticians, Statistical Culture is the study of how statisticians of various levels can
successfully merge.

If we want to successfully achieve “Viva Statistical Science” is it a prarequisite to also
successfully acheive “Viva Statlsgical Culture”? ] believe that the answer is an unequivocal
yes if we take as our motto “Always remember... Statistics is Fun” (where fun can have one
or more of the meanings: fun (elegant), functional (useful), functional (abstract analysis),

function (graphical), function (estimation), fundamental).
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PROCLAMATION

City of College Station

WHEREAS, there is no future without statistics,

WHEREAS, the future of our nation requires every citizen to have statistical maturity to
understand and implement decisions inevitably based on the analysis of data,

WHEREAS, students planning careers should be made aware of the importance, relevance,
and beauty of statistical science,

WHEREAS, to help accomplish the above goals the week of April 23rd - 29th has been '
proclaimed National Science and Technology Week and Mathematics Awareness Week,

WHEREAS, to stimulate awareness of statistics as a discipline at the interface of science
and mathematics, the Statistics Department of Texas A&M Unliversity is organizing a
program for Statistical Science Awareness Day on April 21, 1989,

NOW THEREFORE I, Larry J. Ringer, Mayor of the Clty of College Station, do hereby
proclaim April 21, 1989 as:

“STATISTICAL SCIENCE AWARENESS DAY”

in College Station, Texas, and urge all citizens to study the proposition that quality
of life in the high tech world of the future requires each person to have some level of
statistical maturity.

PASSED AND APPROVED THIS THE 13th DAY OF April, 1980.
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Madison, Wisconsin U.S.A.
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0. Prelimi .

In this report, some techniques for studying random mappings and related problems are dis-
cribed. This summary concentrates primarily on methodology developed by the author. Conse-
quently, the work of other scientists, active in this area, will not receive extensive treatment in this
report. A nonnograph is in preparation, which will give substantial treatment of the history of the
subject and an extensive bibliography.

The present report will concentrate on two methods used by the author to obtain result in the
theory of random mappings.

The first of these is the use of classical combinatorial enumeration methods. The second ap-
proach is the use of a “‘composition theorem" to construct generating functions. The later technique
has wide generality, leading to many distinct results upon specialization of the parameters.

1. Introduction. |

Let X, be a finite set with |X,| = n and let T, be the set of all mappings of X, into X,. If
a, B € Ty, then define (a - 3)(z) = a(S(z)) for every z ¢ X,. With no loss of generality, we can
take Xn = {1,2,...,n}. (It will be convenient to introduce some exceptions later, for which the
choice X, = {0,1,...,n} has some minor advantages). Clearly |T},| = n", |

Let Pr, be a probability measure on the subsets of T,. Various mathematical models are obtained
by appropriate choice of Pp,. When there is no risk of ambiguity, the measure will be denoted by
P. ,

2. Representations of the mappings.

“In this-section-we-introduee-twe-additional .representations for-a mapping aeTy, which are

useful in many applications.

First, there is a one-to-one correspondence between a class of labelled directed graphs Gh,
known as functional diagraphs, and T},, the set of mappings of X, into X,. This can be demon-
strated as follows. Fix aeT, and let zeX,. The if a(z) = y, draw the directed edge from z to y.
Such a graph will have vertex set X, and have exactly one edge emanating from each vertex. These

graphs are in fact characterized by that property. Similarly, if a labelled graph whose vertex set in
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X, is given for which exactly one edge emanates from each vertex, define a(z) as the terminus
of the edge leaving = for each zeX,. Because of this isomorphism, we will identify each mapping
with its corresponding graph and employ the same notation and terminology for both.

Another representation may be constructed as follows, Let A, be an n x n matrix constructed
as follows, If a(4) = j, then let a; = 1, otherwise let a;; = 0. Such a matrix has exactly one
“one” in each row. Also, assume there is an n x n matrix of “zeros” and “ones” with exactly one
“one” in each row. Then, if the “one” in row 1 is in column 7, set x(s) = j, s = 1,2,..,, n

The three representations, the mapping, the directed graph and the matrix can be used inter-
changeably.

3. Properties of Mappings.

Let aeT, be a fixed mappping. For every z¢X, define zo = 2,2, = a(z), 23 = a(z;) =

a?(z),.... Thatis, in general let Tpy) = a(zym) = a™(z)) = o™ !(x0), forallm > 0.

If for some m > 0,a™(z) = y, then y is the mth image of z; the set

Sa(z) = {2521, 4.}

is the set of successors of x under a.
If for some m < 0,a™(z) = y, then y is a mth inverse of  under a. In general, a™(z), m <
00, may not exist or may not be unique.
Let
Pa(z) 20 {a™(D) };

P,(z) is called the set of predecessors of z. _
If there exists an m > 0 such that a™(z) = z, then z is said to be a cyclic element under o
and the set

Ca(2) = {z,a(2),a%(2),...,a™}(2)}

is the cycle containing z. The least such m is the length of the cycle containing z. If z is not cyclic,
define Cy(z) = ¢. The set of cyclic points under ar is Cy ’,55'. Calz).
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If thereisan » > 0 and an s > 0 such that
a'(z) = a’(y),

then z and y ave equivalent under o It is easy to see that this is an equivalence relation and
the aquivalence class conuining 2, K,(2), is called the component containg z. This equivalence
relationship decomposes X, into equivalence classes, which are called the components of X, under
o If X, = K.(2),then & is said to be connected (more precisely, the graph of a, G4, is connected),
Also it is easy to see thai each component has exactly one cycle.

Fix z and consider the set {z,a(x),a?(z),...}. Since z¢X, and | X,| = n, this set can have
at most n distinct elements. Hencs there are » > 0,8 > 0 such that " (z) = o**"(z). The set
{a"(x),a*!(z),...,a"*~!(z)} is the cycle in the component Ka(z).

A vortex zeX, is said to be of height m under « if m is the least non-negative integer such that
a™(z) is cyclic. The set of vertices of height m is called the mth-stratum of a, Sm,a. AlsO, the
height of « i defined as

| Ho = max{Sma ¥ ¢}

Note that Sy . is the set of vertices cyclic under z, C,.

The restrictinn of a to C,, defines a mapping, which we call the permutation induced by . This

mapping, deroted by a*, is a permutation on a subset of X, of cardinality |C,|.

Finally, we introduce the notion of the order of an element aeT,,. Consider the set of distinct
elements in {a, a?,...}. The cardinality of this set is the order of . If « is a permutation, this
reduces to the usual definitdon of the orde_r of elements in a group. We denote this by O(«) and it
is well-known that

0() = 0(a*) + max(0,H, ~- 1).
4. Mathematical Models.
In this section, we provide illustrations of some of the commonly employed choices of Pr, and

the mathematical structures that they describe.

60




1. Let P{a($) = j} = Ly = 1,2,...,nand let the random variables a(s) be mutually

independent. The Pr, is the measure which assigns probability n~® to each mapping in T,
We will refer to this as the symmetric case.

2. Let P{a(s) = j} = =L if j o 5, P{a(i) = i} = 0, and let a(1) be mutually independent

ramdom variables. Then Pp, is the measure which assigns the uniform probability distribu-
tion over all mappings with no fixed points.

3. Let P{a} = n!~! if o maps X, onto X, and O otherwise. Then Pr, is the uniform measure

over the set of permutations on X,,.

4. Lzt P{a(s) = 1} = pand P{a(i) = j} = 1= forj o 1, Also. let a($) be independent

random variables. Thenifp > & +, the set of mappings is known as mappmgs with an attracting
center. If p < &, these are referred to as mappings with a repulsing center.

Other assignments lead to random rooted labelled trees, forests of random rooted labelled trees,

random connected mappings, and so forth.

In the sequel, we restrict to the symmetric case, The other cases will be treated in the more

extensive manuscript, which is in prepararion.

S.

Probability Distributionns for the Symmetric Model.
For this case, Pr, = n~" for every mapping aeT,. We first establish theor:m 1.

Theorem |

P{ISu()] = k. |La( )] = 1} = (2 g', * (5.1)
1 €5 € k < n where La(2) isthe cycle in Kq(x)!
lk
P{ISu()| = b} = (o (52
n (n_l)l
PlLa(2)| = i} = 3 (5.3)

ke j
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also
E|La(z)| = E{|Sa(2) |+ 1}/2. (5.4

Proof. Since the probability that a(s) = 7,7 = 1,2,...,mn,d = 1,2,...,nis n"! and the
images of each element § are independent random variables, we have:

P{|Su(2)| = k|La(2)| = j} =

P(a'(2) ¥ z,a(2),...,0"(2),0 <r < k- 1,a*(z) = a*/(2)}

. (n=1)!
(n=k)! "’

verifying (5.1); (5.3) follows trivially. To establish (5.2), one need only sum (5.1) over j,
1 € § < k. To establish (5.4), note that E|La(z)| | |Sa(2)| = k} = &1, therefore,

Esn E{|Lal2)| | |Salz)) = k} = E{lsa(a:z)l + 1}.

The following theorem will be repeatedly employed.
Theorem 2. 'I’héjoint distribution of |So( )|, |Si(a)],...,|Sn-1(a)| is given by

P{|So(a)| = no,|Si ()| = ny,.. |Snet ()| = Mpy }

n!
=
ming!l.. . ney!

nolmd alt ...l (5.5

where

Proof. |So(a)| = nif and only if « is one-to-one and onto; hence we obtain nin™", which
coincides with (5.5) when |So(a) | = n.

Otherwise, assume |So(a)| < n Then, ;-,—{-:r is the number of ways of partitioning X,
among the various strata. The no clements in Sp(a) can be permuted in ny! ways. Next for each

g+ 1

stratum S;(a), with |S;(@)| = m;, there are n*" ways for the n.; elements in Si.1(a) to have

images in S;(a).




Remark. If some stratum, say Si(«) = ¢, then (5.5) = O unless Siy((a) =+ = Sy (@) = ¢, ‘

Theorem 2 is basic to many items in the sequel. Marginal distributions available from Theorem -
2 are the distributions of the number of cyclic points, the distribution of the height of the mapping, |
the distributions of the number of elements in each stratum and the order of the mapping, The
following lemma will prove useful in many application of Theorem 2.

Lemma 1. For all complex z and arbitrary positive itegers g,

g |
Wz+ )™ =Y ¥ ﬁ'—q—,—,z"l?---lk-p (5.6)
mml lboklgng C1E s bm

yooirlm 21
Proof. If g = 1, the conclusion holds trivially, Therefore, assume that it holds for 1,2,...,
g—1,¢g2> 2. Now

¢ -
2+ =z ) ( =1 ) gh=lqe-h

I l] -1

q=1 q
ot B[] s oty

1T ll

Since 1 € ¢ — Iy € q - 1, the induction hypothesis applies and we get

q=1 q=h -
z(z+q)"‘l=z'+z( 1 )z“z E £'———LI—Z--!-—Z"...l‘,;,""

{
hal \ U mal  l+oleereg=h bl

ll .meolZl
C =t g=m

g! Wi e
=z'+ z‘“..'l oL
Mgl ‘l§ lﬂ*---*%\""“l zl!lzt o.-lm.‘.l! ! ™

2 ibmet 21
q
LY
-Zq+ _—‘-—zil[-Oolﬁ_l.
L‘Eﬂ lﬂ-%-' lll 'NLMI
‘ll'“lluzl

Since 21 is the term for M = |, the induction is complete and (5.6) is established.




We now have:
Theorem 3. The distribution of the number of cyclical elements |C,| is given by

(n= D!y

P{lcﬂl -j}- (ﬂ—j)!ﬂ .

(5.7

Proof. From Theorem 2,

P{|Cal| = j} = P{|So(a)| = j} =

o amem Mami o=
Eﬂﬂll-nm-llju P T2 @

the sum running over all partitions of n — /. We rewrite this expression in terms of non-empty
partitions obtaining

, nl L _
P{|Colm=j} = Zmﬂl"‘ e LLoamanT, (5.8)

the sum runningoverm = 1,2 ..., n=1,m,m,..., My 2 1 with{:“:l n = n—j. A comparison
of (5.8) with (5.6) show that this is related to (5.6) with g replaced by n— ; obtaining

n_ G+ ne )it
(n= /1 n

P{|Ca| = j} =

nl 7
= _(ﬂ———])! ;ij =1,2,...n

establishing Theorem 3.

Remark. Note that (5.7) and (5.2) are identical. There does not appear to be an obvious expla-
nation for this coincidence.

Theorem 4. The probability distribution of |P,()| is given by

(n= D12 (n- )™/
(n=DIF = Din-!

P{'-Pu(z”'j}' J=1,2,0.,n (5.9

Proof. Forj > 1, let X, be j — 1 specified clements of X,; we can designate these as
Z1,T2,...,%j-1. Let T be adistinguished element of X, notin X, Let Ty be the set of mappings
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ain T, with a(Xy = (X;.; U{z})) = Xy = (X;-1 U{z}). Define T} as those mappings o with
a(Xj-1) = X;1 U {z} and a*z, = z for some k > 0. Let T* = T\ N T3 Then

P{|Py(2)| = j} = ( i

1
. ) P{aeT"}, forj> 1,

and
P{aeT*} = P{aeT)} P{acD }.

i)
P{acTi} = ("—"J) .

n

First, we have

Therefore, we need to calculate P{aeT? }. This is accomplished by restricting attention to X,
and defining the mapping o satisfying o/z; = az;,i=1,2,... J =1 and o/x = z, That is, o is
the restriction of a t0 21, ..., 2,1 and  becomes a fixed point,

Thus
= 1)!

1 (
PlaeTs} = == Em{...nmf

the sum running over all non-empty partitions of / — 1, From lemma one, the sum in (5.10) can

LTS LI (5.10)

readily be evaluated, obtaining

j1=
P{aeT:}-r—vT,-
and hence .
/~2 n—J ! n—1
rmiot=n (224 (071
n J-1

establishing (5.9), for; > 1.

Ifj = 1,then {X,} ~ {z} is mapped into { X,,} — {z}; there are (n— 1)™! such mappings.
which also yields (5.9).

Trivially, we have
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Remark. If |Pa(x)| = n, then z is cyclic and « is connected. This event has probability n~!
by (5.9).

Corollary 1.

P{l{a""(2)} -J‘}-(:)(ﬁ)’( 1-%)"'1. (5.11)

6. Asymptotic Extimates in the Symmetric Case.
We now obtain the asymptotic (n — oo) probability density functions of |Sy(2) |, |La( )|, |Cal.
Accordingly, we establish the following theorem.
Theorem 5. The joint asymptotic (n — oo) probability density function of il Liaf¥ll 44
given by

flu,v) me= 0 <y<u<oo, (6.1)

where 4 = L‘gé,%u,v- 5‘{5;?1

The asymptotic (n — oc) probability density function of

u = | So( 37)'/\/;‘.
is
flu) muem@2 >0, (6.2)
The asymptotic (n — oo) probability density function of

v=|La(D)|/ VR

is
) = V2Im(1 —o(v)), v>0, (6.3)

where @ ( v) is the cumulative distribution function of the standard normal distribution. Specifically

O(v) = ’ (Zw)‘*e"‘/zdz‘.
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Proof. In (S.1) let k = /Ry, | = \/nv and replace the factorials using Stirling’s formula. This

gives
n=viu=} o=y

(n~ \/ﬁﬂ)“’ﬁr

P{|Sa(2)| = /0y, |La(2)| = /rv} ~

g~ Vhu
- 'n(l _ #) —vius

Expanding log (1 — u/\/n) is a power series, we get
F(u,v) == 0<v<u<oo.

(6.2) and (6.3) are obtained by calculating the corresponding marginal distributions.
From these asymptotic relationships, we can obtain the following corollary.
Corollary 1. The means and variances are given by

B{lLa(@)} ~ g2t oL@ ~n[} - §], (6.4
B{IS«@)} ~ g2mt, oIS ~n[2 - §], (6.9

and ‘ -
E{lc.|}~%(2m)*, o*(ICa) ~ 1| 2 - §]. (6.6)

7. The Composition Theorem.

In this section, we give an abbreviated treatment of the composition theorem. An extensive

discussion of this theorem and some generalizations of it will be treated in the future monograph.

Let Sy be the symmetric groupon {1,2,..., k}. ToyeSk, we can associate apartition {ry,72,...7},
where r; is the number of cycles of length . Clearly }:;ir.‘ = k. The k-tuple {ry,72,...,74} will
be referred to as the class of 4. A subset M, of S} will be called self-conjugate if and only if
it is the set of all permutations in a subset of the possible classes. It is casily seen that for every
AeSk, AMA~! = M),. Now let ¥, be given self-conjugate subsets of S, and let wy = [Wy|,wo = 1
and let w denote the sequence {w,}$3,. Define

Pu(z) = f:w.,z"/kr (7.1)

k=0
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Let Wi, k < nbe the set of all 3 = 47y~!, where 7 is & one-to-one mapping of X, into X,
and r¢W),. Now we enumerate the set of aeT’, with

1. a*ecWy, forsome k < n
2.  aeT}y, the set of aeT), of height < ;.
The number of such mappings aeT, will be decided by Vugn Where Vi, 50 = 1, Also, we denote
Vunein bY V.
Theorem 6. Ifn>0and0 </ < n,

nl Lk [}
Vagn = 1 mwh k' k* .. kiLy, (7.2)

where the sum runs over kg + k; +otkymako,kyy ..k 20,

Proof. This is an immediate consequence of Theorem 2. The following corollary is often very
useful,

Corollary 2. Let Vi be the number of aeT, with a*eWi, k fixed and 1 Lkn
Then

Vn = :i: Vit (7.3)
and )
Virn = ( :: 11 ) wyn™ | (7.4)
Proof. The proof follows readily from Lemma 1.
We now define
Vagn(to,bryeee te) = 3 m—;’%’:-.-@—!whké“ kL kL toth e (1.5)
and

[
Yus(Zitott, .. ty) =3 Vgalto, by ty) 2" /0, (7.6)
=0

This leads to Theorem 7.
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Theorem 7.
Wu,0(2:t0) = ®y(280) (7.7

and forj > 1
‘I’w.j(zéto,h vee ;tj) - ‘!'WJ—I(Z; tOvtl:'” ;tj—ht/-le“’)- (78)

Remark. This theorem can be established in a formal algebraic sense. To obtain an equivalent
analytic formula, one needs (o restrict to |2¢,.;e*/| < e~! and max {|zto], ..., |2t;|} < e~!. Such
details are omitted here but are essential for asymptotic analysis,

Proof. Write

[nd ]

2" n!
Wyg(2ito,t1) .. tf)"z,ﬂ Z;Mzk,lkolkl!. k,_ll(n—q)!

Wit (Kot1) ™ oo\ (kjoatymt) M= (ky-ity)™

3 ~1t2) ™
T3 ~E% Wit (ot )M . . (oy_gtyy) = 2 -‘——L(,,_' o

=23-Vw4-1.¢(to 2tz te®),

q=0
Let Ag(20) = 20,A1(20,21,) = 2,¢* and for j > 2 let

Af(z0,21,..0,2) = Apei(20, 214000 252, 2p-18Y).
Theorem 8. Forj > 1, we have
AyCeo, 21, . v 8} = 20N (2100, 2) (7.9

Proof. The conclusion is immediate for j = 1. Assume that the resultis valid forj~ 1,7 > 2.
Then

Aj(z0,21,...,2) = Aji( 20,2100, 22, 2j-18")
= 29 exp{Aj-2( 20, 21,..., 252, 2j~16")}

= zo exp{A;-1(21,22,...,25-1,29) },
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establishing the theorem,
We now state and prove the composition thecrem.

Iheorem 9.
Yo (2ito, 81,000 ty) = Oy(As(2to, 2ty,..., 28)). (7.10)

Proof. Forj = 0 this is a consequence of Theorem 7, Also from Theorem 7,

\Pw(z;to,h, ‘e ,t;) = ‘Pw_l(z;to,tl,...,t,,;,t,_le"’).

Therefore,
Wyy=1(2ito, by, ... ,tj-z,tj_lc"’) = &, (Aj_1(2tg, ... ) 242, 2851 e*r)

= &y (A, (2t0,... 2852, 2851, 28))) .
The following corollaries can now be easily established.

Corollary 3.
\{"w.}'(z:tﬂp“‘;tj) -t ,.A}(ztﬂp-“’Zt}')) (711)

Corollary 4, LetA;(z) = As(2,2,...,2). Then

Wy (2) = Oy(A(2)) = Y Vuymz"/nl, (7.12)
m(

where Ag(2) = 2z and for j > 1

Aj(z) = zeM=1(D, (7.13)

. . Corollary. 5. Let Vy,jnx be the number of mappings aeT, with a®¢Wyyn, aeT)y and |Cq| = k.

Then
tkb

o0 n
‘%EVWM-;,--ww(A,(zt,z.‘..,zn. (7.14)
0 k=0

The coraposition theorem provides enumerating formulas for mappings satisfying the hypothe-
ses of Theorem 6. For such mappings it permits enumeration by number of points, number of

points on cycles, nurnber of points in each stratum and so on. The ability to choose W), provides

the generality of the results. [llustrations foilow.




Example 1 Let W), be the set of k cycles, then the set of mappings considered is the set of
connected mappings.

Example 2 If W, be the identity mapping for k = 1 and W, = ¢,k ¥ 1, the set of mappings
is the set of rooted labelled trees
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HANDLING UNCERTAINTY IN INPUT TO EXPECTED VALUE MODELS

Mark A. Youngren
Requirements Directorate
US Army Concepts Analysis Agency
8120 Woodmont Avenue
Bethesda, Maryland 20814-2797

ABSTRACT. Due to the large number of entities and processes that must be represented, combat
models at tl%e theater level in the Army today are ezpected value models. An expected value model is
deterministic - it uses the expected value of random variables as inputs and generally uses some sort
of expected value within the internal processes. The use of expected value models creates problems in
the proper interpretation of their output and ways for representing the uncertainty associated with

the model input and processes.

This paper suggests a method for hawdling uncertainty in the input data sets (which usnally
contain elements that are specific realizations ol random processes) in situations where the outcomes
of interest can be expressed in binary variables (e.g., *‘success™ or **failure™). A theater nuclear
exchange is used as an example, having many different possible outcomes determined by random
processes. A method is provided for describing the space of all possible outcomes of the exchange and
partitioning the space into sets of outcomes which. if used as input into a theater-level conventional
simulation. are expected to lead to significantly different results. A method for sampling the mos

probable outcome from each set is also explained.

This approach permits the construction of an experimental plan that requires a small nmmber of
model runs. each run expected to provide a significantly different result. From these runs an
estimate of the variability in the theater combat resulting from uncertainty in the input data (in

this case. the impact of a nuclear exchange) can be made.

L._Introduction. Modeling large systems and processes such as combat at the theater level is dithicult,
The numhber of possible units and interactions has driven most modelers to use an crpected vulu
approach. An expected value model nses the expected value of random variables as inputs and

grenecally  uses some sort of expected  value within the internal processes, The models are
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deterministic; that is, they will yield only one set of outputs for any given set of inputs, The use of
expected value models creates problems in the proper interpretation of their output and ways for
representing the uiicertainty associated with the model input and processes, In a recent discussion

paper, Stockton [1989] provided the following example:

“A Red unit will go northwest or northeast based on whether his strength at a given poiut is
above or below some threshold value. Let's say that the real-world probability of being above the
threshold is 0.6 and, if above, he will go northwest to face a very strong Blue force armed with
Supertank. If he goes northeast (probability 0.4), he faces a relatively weaker force, armed with bows
and arrows. With several replications of a stochastic model, expected losses will consider both
possibilities and will develop vxpenditures of tank ammo apd arrows; with an expected value model,

he will always go toward the stronger force, and no expenditures of arrows will be observed.”

Stockton corroctly points out that the results of an expected value model, even when provicded
expected value inputs, are pot the expected value of the output. e suggests that the output of sich
a model may be a “most likely value,” using hls example, However, we can offer another exaiple

which illusteates that expected value models also fall to provide a “most likely” result,

Suppose in the example provided nbove that the Red force has a visual sensor that can see all of
the Blue forces traveling together (with probability 1) if the skies are elear, and eannot ser nuy ol
the Blue foree if the skies are cloudy. To simplify, suppose that the skles are either elear oe elomly,
aud the probability that the skies are clear ia 0.6, How many Blue units are detected by the Rl
force? The expected value is 0.6 + (100 percent of the Blue units) 4 0.4 . (0 percent of the Blue
units) = 60 percent of the Blue units, Expected value models will normally apply expected values,
cither as inputs to the model (60 percent would be an expected value for the probability of tarae
acrpuisition) or internal to the processes, Note, however. that acquiring 60 percent of the Bluae loeee i
the Jenst likely outconie, as it occurs with probability 0! Bven if we chose the most lkely resuit or
100 percent detection (which is not the way that expected value models generally handle continuons

variables as opposed to choices), we run into problems,

Now let us combine the two examples, It is reasonable to suppose that if the Red force can see
the Blue force, or even a large percentage of the force, it will notice that one force is armed with
Supertank and the other with bows and arrows. Thus, given detection, it wiil engage the weaker
(hows and arrows) force, If we have the model take the most likely values in the two examples, it
will (1) detect 10U percent of the Blue force and (2) go unorthwest to engage the Blue foree, Kach

result s by itself most likely, yet the result is the most unlikely, Even if one modeled the Red Toree
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detection at 60 percent, the combination of a 60 percenl detection (still sufficient to distinguish

between Supertank and bows and arrows) and moving northwest is unlike'y.

Admittedly, these examples are simplistic, Yet it is true that expected value models not only fail
to yield the expected value of the output, they also fail to yield the most likely output. What, then,
is the probability associated with the output of an expected value model? The answer to that
question, unfortunately, is “nobody knows."” This is why expected value models can yield
counterintuitive, contradictory, and/or nonsensical results when initially tested. The usual approach
when this occurs is to adjust input data, processes, thresholds, ete. until the model yields
“reasonable” results, Hopcfully this yields a model that will provide suitably realistic results with a
different input data set, but there are no guarantees. We unquestionably have no way of determining

the likelihood of any given output from a complex expected value model,

2. Sources of Uncertainty. There are two arcas of uncertainty properly associated with an expected

1] 4 . \ + *
value model that must be handled: uncertainty in the model input, and uncertainty in the model

processes,

Unfortunately, a “‘hlessed” input data set is often regarded as certain - if we have apptoval for n
set of numbers to be used in the study, then those numbers are tlic set'to use to support our
analysis, Excuzsions from the base daia set for purposes of analysis will vary only a smali mumber of
data items by design: the others remain fixed. Some input data values are truly fixed: the wir
distance from Bremen to Munich is an example, Other values may be fixed by scenario; for exarnple,
the daylight hours vary by latitude and time of year; a scenario will fix a time and place that will in
turn determine the appropriate value for daylight. Unfortunately, these scenario-driven items are
often fixed arbitrarily, even when they may have an impact upon the analysis. For example, if »
foree is partienlarly vulneeable to detection by a sepsar that requires daylight, you can get difteren:
results in a summer versus winter scenario (which will in turn be different than that obtained using
an arbitrary number like 8 hours or 12 hours), This difference may even he apparent in studies that
scemingly are not associated with detection -- ammo rates could be significantly differeut. for
example. This is a simple, obvious example: many others, not so easily identified, exist, \We must
regard the inbut data set as a single realization of many stochastic variables. It is not always clear
whicl} realiza’. n to select for use -- averages do not always exist and may no* be approprinte.
Furthermore. correlations exist hetween sets of these data inputs; for example, selecting the most
likely or expected values of cloud cover and rain independently may yield the conibination of «inny
with 1| inch of rain! Note that this problem exists with stochastie {Monte Carlo} modeis <« they ala

require a fixed data set that is nov varied from run to run.
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Uncertainty also exists in the model processes, Stochastic models generally handle this
uncertainty through random number draws, although they are also subject to problems associated
with correlations (separate random number draws generally require independence) and fixed values
such as thresholds. The examples provided above illustrate some of the problems associated with

handling process and input uncertainty within an expected value model,

3. Addressing Uncertainty in Expected Value Models. At this point, it would be nice to be able 1o

make a statement like ‘“the solution to this problem is easy; one simply needs to...." Unfortunately,
there are no simple, universal solutions to the problems associated with addressing uncertainty in
expected value models. It is clear, however, that any methods that might alleviate the problem must
deal with the uncertainty associated with the data input as well as the uncertainty associated with
the model processes. Furthermore, the uncertainty in the input data justifies the following assertion:
ezeculing a‘n ezpected value model only once for a given data sel does not provide a meaningful
result. If an expected value model i3 to be used to support analysis, the user must be prepared to
execute multiple runs, varying in some meaningful fashion the input data and/or the mocle!
processes, in order to establish some measure of the uncertainty associated with the output of such »

model,

Ideally, such an approach will minimize the number of runs required (because running a large
expected value model can be very costly), yet provide a significantly different result from each run,
thus increasing the variance across all outputs, We want to he able to describe the probability that
the conditions represented in the input for each run (or conditions similar to those represented) will

occur,

We have developed an approach to handling input uncertainty in theater-level expected value
models in sitnations when the outcomes of interest can be expressed in terms of binary variahles

"

i.e.. one can deseribe all events as “yes™ or *no.™ “on” or “off.” ete. The particular application tha

will be developed deals with a theater-level tactical nuclear exchange.

Several models of conventional warfare exist at the theater level. The model used at CAA is
called the Force Evaluation Model (FORCEM). Like most theater-level models and scenarios,
FORCEM is a low resolution expected value model, representing combat forces at the division and
higher level and time in 12-hour steps. The Nuclear Effects Model Embedded Stochastically in
Simulation (WEMESIS) research at CAA (Youngren {1989]) documents an analytic model for
describing the possible outcomes of a theater-level tactical nuclear exchange, The methodology

described in this paper arose trom the need to summarize the stochastic outeomes of the theater-level
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exchange as input to FORCEM.

4, The Scenario. In a theater-level battle where nuclear weapons may be employed, the commander
of the forces on a side may have an overall objective (such as stabilizing the forward line of own
troops (FLOT) in the defense or achieving a breakthrough in the offense) that will necessitate the
use of nucleat weapons. In order to meet this objective, the commander will specify the defeat
criteria against each unit -- that Is, the necessary degree of damage to be achieved against each unit
to meet his objective, The defeat criteria will differ from unit to unit depending upon the unit
mission, the posture, the equipment, ete, The criteria applied to larger units (such as dlvisions) will
frequently focus fires on critical subordinate units, For example, the defeat critetia for a unit might
be achleving a latent lethal dose (about 450 rad) against at least 50 percent of the personnel in the
unit, The defeat criteria for a particular division might be to defeat at least 50 percent of the

infantry units or at least 40 percent of the armor units in the division,

Although the effects of a tactical nuclear laydown at the theater perspective are normally
described in terms of defeating divisions, tactical nuclear weapons within the theater are targeted
against forces at the company and battery level, The term subunil (also target or target subunit)
used in this paper denotes a combat organization (such as a company) that would he targeted by a
nuclear weapon, The size of the subunit will depend both upon the capabilities of the weapon system
used to engage the subunit and the targeting doctrine of the firer, For example, companies may he
targeted close to the FLOT using small, artillery-fired weapons, while battalions may be targetod
deep using missiles or air-delivered weapons, Fot purposes of exposition, we will refer to the low-
resolution combat organizations represented in theater models such as FORCEM (usually divisions,

although other forces may be represented as well) as units,

There are very many targetable subunits in a typical theater scenario. on the order of 107, Ax n
result, there are 2”"l possible outcomes that can oceur in terms of the deleat or failure to defeat each
subunit, Even if we look only at the defeat or failure to defeat the low resolution aggregate units
represented in our theater model (usually several hundred), we still have on the order of ‘.'2“’1
possible outcomes, Even with sophisticated techniques and cousiderable confounding, classical
experimental design approaches require at least one run per variable. The large amount of time and
effort required to execute even a simple run of a typical theater-level expected value model prohibit
more than a few model runs for any study, Classical experimental designs therefore obviously cannot
be applied, Our objective is to construet a plan that minimizes the number of different input data
sets (thus minimizing the number of theater-level model runs) yet fully reflects the range of possible

outcomes of the theater nuelear exchange.
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5. A Method for Addressing Input Uncertainty in Expected Value Models. Describing the outcome of

the theater-level nuclear exchange on each unit in terms of defeat criteria allows us to define a
binary variable B;, where B; = 1 if the unit is defeated; 0 otherwise. Given the assumption that the
outcome is independent between units, the outcome of any exchange is simply a set of 0's and 1's
with the probability that any B; = 1 equal to pd,',m(i), the probability that unit i is defeated, i =
1, ,... m. Methods for easily caleulating the probability of defeat for each targetable subunit are
given in Youngren {1989]. Given m units, there are 2™ possible outcomes. Clearly, if we define defeat
criteria in terms of total numbers of potential nuclear targets (on the order of 10%), there are too

many outconies to enumerate,

At the theater level, however, defeat criteria can usually be expressed in terms of divisions and a
limited number of other high value targets -- on the order of at most several hundred across a
theater. Each division, in turn, will have its defeat criteria established in terms of units subordinate
to that division, For example, suppose that a division j has 10 battalions of infantry (engaged as
battalions), 24 armored companies (engaged as companies), and 20 batteries of artillery. The defont
criteria for this division may be B0 percent of the infantry, 40 percent of the armor, or 80 percont of
both, with a separate criteria for artillery (divisional and nondivisional), In terms of maneuver

subunits, 5 infantry battalions or 10 armor companies must be defeated in order to defeat the

(10+24)! el nfantey battalions and l
IO o (3T ways of choosing p Infantry battalions and g armorer

battalions for defont. and all combinations where p 2 6. q > 10, or ( p 4+ ¢ ) > 60 percent of the

division, There are

subunit (which can be worked out for specific values of p and ) lead to the defeat of this divizion,
If we assume that each subunit i, i = 1, ,,,, 34 has a unique probability of defeat Piefearl s we
probably do not wish to enumerate all sets of subunits where the division is defeated and compiite
the joint probability (which will be the product of p‘wm(i) for the subunits i defeated and
(l'_p:lc/cnt(i)) for the subunits that are not). Fortunately, this situarion is readily amenable to
Monte Carlo solutions, We simply need to draw 34 binary pseadorandom numbers B3, sueh that vach
number B, = 1 with probability pwm(i). and let a binary variable, say Dy, equal 1 if the set of
numbers B; drawn correspond to division j being defeated, 0 otherwise, If we perform N replications
of this experiment, we can estimale P[ division defeated | = 1{: }N_', Dy, If we do this for cach division
J» then we have a probability pddm(dw j) = P[ division J defeated ) for j = 1, ..., ndiv, where ndiv

= the number of divisions,

At the division level, we can define a binary variable O; to define the outcome of the nuclear

exchange with respeet to division j, j = 1. ... ndie, O; = | with probability p (die gy il

J defeat

division J is defented: 0 otherwise,
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Across the theater, the theater commander will desire at least a certain percentage of units be
defeated in order for the employment of nuclear weapons to be considered effective. We can define a
binary function of the random variables O, ¢( Q ), such that ¢( Q) = 1 if the commander’s
objective is met; 0 otherwise, Clearly ¢( Q ) is nondecreasing in Q. The function ¢ may be regarded
as identical to a structure function of a coherent system in reliability theory (Barlow & Proschan
(1981)); thus we can use results from coherent structure theory in our analysis of the nuclear

exchange lssue,

For example, if any % out of in divisions must be defeated in order fi-+ the commander’s

objective to be met,
¢( Q ) = ( oi Oﬂ e Ok ),U, ( ol 02 ' Oh-l Oh-}-l )J.l. e J.l. ( Om-k-H + Om ))
for all possible subsets of size & from the m units, 1 € & < m, where

(x, ) () =1 = (1l =x; )1 ~x;)

Furthermore, we can bound P[ ¢( Q ) = 1] by (Barlow & Proschan [1981] p. 31):

2 P[O;=1] £ P =1] < i P[O,=1],
1 Sn;ag npath .'21:,. [0i=1] s PLe(Q) Is 1 s"}“g neut ;é}a, [O=1]
where P» denotes one of the npath =( T ) possible min path sets (in this case, a min path set is

m

any set of & units), K, denotes one of the neut =( el 1

) possible min cut sets (in this ense,

min cut set i3 any set of m-k+1 units), and || X; = 1 =TT (1=X,). If we let pu(n =
i i
P[ O; = 1}, and number the units such that po(1) < po(2) £ ++* < po(m), then
make!

max T Plo,=1]= 1T pe(i): . min AL PLoy=t] = "I puti.

mi
1 € r < npath iep, immek1 1 <9< neut &R,

This example of a & out on m deleat criteria shows how we can estimate (through houndsi the
probability that the commander's objective may be met. Alternatively, P o( Q) = 1] can be

estimated using the same Monte Carlo technique used to find P[{ O; = 1] for each division j.

6. Partitioning the Space of All Possible Outcomes. At the theater level with a total of nt division-

sized and high value targets, if we examine the nuclear exchange outcome O for each division (or
equivalent high-value target), there are 2*' possible outcomes. It may be the case that it makes a
difference in the battle that follows the nuclear exchange which units are defeated or targets
destroyed in the exchangc. Or, more simply, it may be how many units are defeated and targets

destrayed across *he theater which makes a difference,
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It is possible to define sets of outcomes of the nuclear exchange that, given our best judgment,
we expect to have a significantly different effect on any subsequent theater-level battle (if all
outcomes have approximately the same effect, then there is one set consisting of all outcomes). We
choose these sets hy selecting partitions dividing the sample space (space of all possible outcomes)

into strata such that the following properties are met:

(1) All evente within a given stratum will yield Jpproximately the same overall theater-level
outcome. As a result of this assumption, we regard all events within any given stratum as

ezchangeable,

(2) Any set of n cvents from n different strata are expected to yield n different theater-level

outcomes, Thus, any pair of events from two different strata are 1ot exchangeable,

In practice, all events within a stratum will not be truly exchangeable, and the two events to
elther “‘side” of any partition will likely lead to similar theater-level outcomes. Nevertheless, it is
possible to conceive of outcome sets with different resuits, and we assume for all of the development

below that these two properties are obeyed.

For example, suppose that there are 20 opposing civisions in a sector of combat, Our best
Judgment, given the tactical and operational situation, is that the defeat of at least 7 divisions ol ol
the 20 will be required to avold loss of territory (stabilize the FLOT--which may be the
commander’s objective), Hlowever, if 14 or more divisions are defeated, an opportunity octurs not

merely to stabilize the FLOT but also to conduct a successful counterattack. In this case, If O, = 1

if division i is defeated, i = 1, ..., 20, there are 2*° possible outcomes. We can partition the sample
. ;] 0 o .
space of possible ontcomes into the 3° ( -l? ) outcomes where 6 or fewer divisions are defeated, the
. k=0
K] 2% - . ) i} T
( % > outcomes where 7 or more but less than 14 divisions ave defeated, and the 5 ( Y
b= k=]4 N

outcomes where 14 or more divisions are defeated,

The example given above involved two partitions (three strata): the number of partitions
required depends on the number of significantly different tlicater-level outcomes that need to be
represented. Selecting the partitions will require experienced judgment and possibly some

experimentation with the theater model. If one is unsure about how many partitions to select, the

nuimber of strata should equal the maximum number of theater model runs you ran afford,




7. Stratified Sampling from the Sample Space. Once the sample space (space of all possible

outcomes) has been identified, it is possible to perform a stratified sampling from the sample space,
each sample from the outcome of the nuclear exchange model forming an input vector to the
theater-level conventional model. From each stratum created by our partitions, a single realization
can be sampled. A random sampling approach can be used; however, since the actual likelihood of
all of the events within a stratum may vary widely, we recommend using a fixed sampling scheme,
in particular sampling the mode from each partition, Given the assumption of exchangeability
between events within a stratum, any choice will have a roughly equivalent effect on the theater-
level outcome, so any choice is valld, Using the mode allows us to compensate for the fact that the
events within the stratum are only approximately exchangeable. A modal {most likely) outcome will
also form a plausible input suitable for subsequent analysis. The theater-level conventional model,
such as FORCEM, will be run ns times for each of the ns strata created from ns~1 partitions, using
the outcome selected from each stratum as an input. If the second assumption that we made in
selecting the partitions is met, the ns battles simulated in FORCEM using outcomes from the ns
different strata should yield noticeably different results. The response surface estimated using these
ns FORCEM runs should provide a better representation of the variability possible in theater-level
combat where nuclear weapons are employed than a random selection of ns outcomes from the gt

outcomes possible, where n¢ is the number of targetable subunits in the theater,

The question naturally arises, **what if T am wrong in selecting the partitions?" Partitioning is o
judgmental process; more of an art than a science. The situation in which this technique 18 to he
used is one where many runs of the deterministic model are not possible; therefore, it is not possible
to sample the results of many outputs given many different input data sets describing different
nuclear exchange outcomes, As a result, we simply do our best to try and force realizations {rom
areas of the space of all possible outcomes where we think that the theater-level outcome will be
different, The impact of being wrong is not much different than being right. We still have another
point in the theater-level outcome space that you are sampling, The fact that the nuclear exchange
outcome did no? lead to the theater-level outcome expected should be of great interest to the
analysis, Either the theater model has deficiencies in correctly representing the impact of the
exchange, or the theater situation is (surprisingly) robust to the exchange. If the theater outcome
that you tried to create (by selecting the nuclear exchange outcome stratum) is still of interest,

another run could be attempted (if time and resources permit), sampling from a more extreme point

within the stratum,




8. Selecting the Most Likely Qutcome (Mode) From Each Stratum. Selecting the mode from each

stratum is simple and not computationally intensive. The partitions defining the stratum will
establish the outcome vectors Q that fall within each stratum, Recall that po(j) = P{O; = 1], and
let qo(j) = 1 = po(j). Order the po(7) and qoij)’s together from the largest to the smallest value. To
select the mode within each partition, go from the first value (po(s) or qo(s) ) and select the outcome
O; = 1 for each po(j) and the outcome O; =0 for each qo(7). Continue until each target j has an
outcome assigned, making sure to assign only one outcome to each target, It will be necessary to
“gkip” over the higher probability ( pa(j) or qo(j)) for some targets j in order to have a total set ol

outcomes fall within the partition.

'This procedure can most easily be understood through an example. Suppose we have five
divisional units with the following probabilities of defeat (P[ O; = 1]): po(1) = 0.2, po(2) = 0.25,
Po(3) = po(4) = 0.4, po(5) = 0.6. We also have tlie [ollowing strata defined in terms of number of
units defeated: { 0, 1 }, { 2, 3, 4 }, and { 5 }. We order our probabilities as follows: q,(1) = 0.8 _>_
Q0(2) = 0,75 2 po(5) = qu(3) = qo(4) = 0.6 2 pa(3) = po(4) = qo(5) = 04 2 po(2) = 0.2
pa(l) = 0.2

The first stratum must have zere or one unit defeated. Thus our mode for the first stratum lIs
Ao 1) qa(2) po(B) qa(3)qa(d) (Le. outcomes Oy=l, Oy=0, Op=1, Oz=0. Oy=0), with a
probabllity equal to (0.8)(0.75)(0.6) == 0.1296. ‘The second stratum must have two. three, or four
units defeated and the mode is qo(1)'qo(2)po(B8):qo(3):po(4), with a probability equal to
(0.8)(0.75)(0.6)%(0.4) = 0.0864. In this case, we ‘“‘skipped’® outcome O, =0 with probability 0.6 and
selected outcome O4=1 with probability 0.4 so that we would have at least 2 units defeated for this
strata, Note that an equally likely selection would be qo(1):qo(2)pa(B) qo(4)pa(3). The thinl
stratum must have [ive units defeated and the mode i po(3) pa(3) po(d) o pol2)pa( )y with o
probability equal to (0.6)(0.4)%(0.25)(0.2) = 0.0048.

9. Interpreting the Results of Conventional Runs Using Stratified Inputs. If we wish to obtain an

output measure from the theater-level conventional model that we wish to average across all possible
outcomes (which is the sort of thing we normally do in our simulation models), we need to construct
a weighted average from the ns runs conducted using the theater model. The weight assigned to the
output measure from each run & would be the total likelihood of all events within stratum k. & =

.. .ns. If it is possible to enumerate all of the possible outcomes (nt sufficiently small). this
likelihood can be computed directly. If nt is too large. we can conduct a simple Monte Carlo

estimation of the probability p, that an event chosen at random falls within stratum kb=

£2




ns. This is the straightforward process of estimating the vector { py,..., pus } from a multinomial

cistribution.

We can return to the previous example to illustrate an exact computation of the likelihood of all
events within a stratum, Recall that the strata were defined in terms of number of units defeated:
{0, 1} {23 4} and { 5 }. The probability that 0 units are defeated is P{ 0 } =
40(1):qa(2)+q0(3)'q0(4)+qo(5) = 0.0864. There are ( ‘;’ ) = 5 possible outcomes leading to 1 unit
destroyed; they are:

Po(1):90(2)+q0(3)Go(4)*q0(8)s  qo(1)'Pa(2) cta(3) qo(4)qe(B))  qo(1)qa(2) Po(3)+qo(4) c10(5),

qo(1)'q0(2)+q0(3)po(4)-qe(B)s  qo(1)*qo(2) qo(3) qo(4) po(5)
with a total probability of 0,021640.0288+0.0676+0.0676+0.1296 = 0.2952, Thus the totxl
likelihood of the events in the firat stratum is 0.0864 + 0.2052 = 0.38186,

The calculations for P{2}, P{3}, and P{4} are messy (more combinations) but straightforwared.
The likelihoods are P{2} = 0.3612, P{3} = 0.2012, and P{4} = 0.0512, for a total likelihood of
0.6136. The likelihood of the third stratum is P{5} = 0,0048,

10. Adjustments. In practice, several cases may arise where it is desirable to make some adjustments

to the hasic model, We describe some of them here,

a. Likelihood of any realization within a strata being too small, In some cases, the total
likelihood of any reallzation from a particular strata may be too small to justify further
consideration, An example of this is the third strata ({5} ) discussed in the previous paragraph, A
probability of less than 0.01 Is likely small enough to ignore in our theater level modeling (this
threshold is. of course, a matter of judgment) In cases such as this, we may wish to simply run the
couventional theater model with the modes from the more likely (in the example. the firar anel
second) strata. V

\

b. The modes from two strata are outcomes that are adjacent to one another. It is possible that
the modes from two strata are at the boundary of their respective strate, next to the same partition,
and thus adjacent to one another in terms of an ordered outcome space. An example of this is also
provided in the previous paragraph, where the modes from the first two strata are adjacent to one
another in terms of units defeated (one unit defeated in the first stratum and two in the second). In
order to reinforce our second assumption (different results from different strata), we may wish to
make a different selection from one stratum or the other in order to avoid similar vesults, Two

possible adjustinents come to mind.
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(1) The first adjustment is to select the next highest likelihood from within either stratum that
does not provide the sume number of units defeated as does the mode. In our example, we would
choose either an outcome of zero units defeated from the first stratum or three or four units defeated
from the second stratum. The most likely outcome where zero nunits are defeated is
qQo(1)+q0(2)+qo(3)+qe(4)qo(5) = 0.0864. The most likely outcome where three or four units are-
defeated I8 qo(1)-qo(2) po(B):po(3):po(4) = 0.0576. Since 0.0864 > 0.0576, we could choose the
outcome of zero units defeated from the first stratum and keep the outcome we previously computed

(two units defeated) for the second stratum,

(2) The second possible adjustment is to define partitions such that there are “gaps’ between
the strata. In our previous example, we might define significantly different outcomes coming from
zeto or one units defeated, three or four defeated, and five defeated, where the outcome of two units
defeated may be an ambiguous case leading to either the same result as { 0, 1 } o { 3, 4 } defeated
units, This approach may be mote realistic, as the ‘“‘transitional cases' at the boundaries of the
exhaustive strata may lead to theater outcomes that are not as clear cut as those nearer the center of
any particular stratum. The only drawback to this approach is the fact that the total likelihood of

drawing results from any of the strata will not equal one. .

11. Repeated Exchanges. Until now, we have assumed that there is essentially only one nuclear

exchange of interest, In other words, we have assumed that the nuclear weapons will be employed
during a relatively small timeframe within tle overnll theater battle, and that the theater hattle will
be conventional thereafter (at least for the duration of the conflict to be shinulated), However, It is
possible that a scenario may call for repeated exchanges of nuclear weapons. We can handle each
exchange by defining the outcomes through hinary variables and stratifying the outcome space as
explained above, However, constructing an experimental plan with a reasonable number of runs of
the theater model becomes difficult. The dilficulty rises from the total number of possible
combinations of individual exchange outcomes, even if only a few strata are chosen for each
exchange. For example, only three exchanges with only three significantly different outcomes (strata)
predicted per exchange will lead to 3% = 27 different possible outcomes after all three exchanges. It

is probably too expensive to execute this many runs of a theater-level simulation model.

To handle such a situation, we begin by determining the probablility of defeating each theater-
level unit and partitioning the set of all possible outcomes as explained previously, We can diagram
the 27 possible outcomes for our example as shown below in Figure 1. If 27 runs are too many to

execute on our theater level simulation. then we must select a smaller subset of the 27 ontcomes to

actually use. The question is, of course, which subset do we pick? A stochastic simulation will




randomly select paths through the ‘‘tree” (Figure 1) by selecting individual exchange outcomes
randomly according to their likelihoods. When a stochastic simulation is run multiple times, the
paths with a high probability of oceurrence will be selected multiple times and the paths with a low
probability of occurrence will be selected infrequently if at all. The result is a weighted set of
outcomes that can be used to estimate the distribution of the actual outcome after three exchanges.
In our case, we cannot even afford to run the model once for each possible outcome, much less
multiple times, However, we have the same objective of trying to determine a set of outcomes
corresponding to particular paths that can be weighted to estimate the distribution of the actual

outcome after three exchanges,

Figure 1. Possible Outcomes from Three Exchanges with Three Strata Each

Following the example diagrammed in Figure 1, let us label the strata at each exchange as higl
(I1), medium (M), and low (L) corresponding to some exchange outcome along some measure (e.4.,
total units defeated). We can bound the outcome using the extreme cholces at each decision point in
our tree: i,e,, HHI for an upper bound and LLL for a lower bound., We can also choose an
intermediate outcome (MMDM) in this case by choosing the intermediate result at each decision point
(note that there may not always be a clearly defined “middle™). Beyond this, we need some sort of
tationale {or selecting particular outeomes out of the 27 possible. It Is important to note that the
variables are nested. For example, the middle outcome from a second strike following a high
outcome from the first exchange (HM) will be different from the middle outcome from a second
strike following a low outcome from the first exchange (LM), because the force strengths surviving
the first exchange (and thus the subsequent theater battle before the second exchange) are

significantly different.

Several approaches conie to mind. both qualitative and quantitative. Qualitative approaches will

choose outcomes according to the strata: for example, alternating sequences sucl as HNML LML and

MLI could be cliosen.




Quantitative approaches will look at the probability assigned to each stratum. For purposes of
illustration, assume that the probability for the outcomes ( H, M, L ) are ( .2, .5 .3 ) respectively,
and that the probability for H, M, and L are identical for each of the three exchanges (in reality,
this would be unlikely but it suffices for illustration). We select our runs according to their
probabilities. For example, the most likely outcome will be MMM with probability (.5)% = 0.125.
The next most likely are LMM, MLM, and MML with probability (.6)%(.3) = 0.075, etc. We can
concentrate on choosing the outcomes with the greatest likelihood (possibly in addition to the
bounds HHH and LLL).

Interpreting the output becomes more difficult when we run only a subset of all possible
outcome strata. In our standard experimental plan, we run all possible outcome strata and weight
the result with the probability associated with the strata. If we do not make any adjustraents (such
as defining non-adjacent strata), the probabilities of a realization coming from a stratum will sum to
1. When we select a subsct of outcome strata, the associated probabilities will not sum to 1. We
recommend normalizing the probabilities associated with the outcomes selected and proceeding

accordingly. An example should make this clear.

12, Repeated Exchanges -- an Example, Suppose we have three exchanges with three significantly

different outcomes (strata) I, M, L with probabiiities .2, ,5, .3 reapectively as stated previously., A

possible selection seheme might be the following,

(1) Select the upper and lower hounds HHH and LLL. The associated probabilities are HIII =
(.2)% = 0,008 and LLL = (.3)® = 0.027,

(2) Select the middle (qualitative) or modal (quantitative) outcome. In this case, they are the

same (MMM) with probability (.3)" = 0.125.

(3) Select the next most likely outcomes LMM, MLM, and MML. The associated probabilities

are equal at (.5)%(.3) = 0.075. Alternatively, some type of alternating strata sequence could be used,

This forms a subset of 6 outcomes out of the 27 possible. The total probability of a realization
coming from any of the 6 selected outcomes is 0,008 + 0.027 + 0.126 + (3)(0.075) = 0.385. The
normalized probabilities are therefore:

— 0008 _ p g
il = m = 0.021

27

o2t -
LLL = m = (),070

86




MMM = 8-%2 = 0.325

LMM, MLM, MML = 3*8-&5 = 0.195.

This sums to 1.001 due to rounding error.

In this example we would execute six runs of the theater-level simulation model, selecting
realizations from the strata associated with each exchange as indicated above (for example, MLM
would select from the middle stratum for the first and third exchange, and the lower stratum in the
second). The theater-level model output associated with each realization selected ean be weighted

with the normalized probability of oceurrence.
Note that we only account for 38.5 percent of the possible outcomes in terms of probability. As
a result, our estimates made from only six runs will not be as good as those produced from a larger

subset from the 27 possible.

13, Averaging the Results, To continue our example, suppose that an outcome for some particulunr

measure from a theater conventional model such as FORCEM was 126 for a run using input [roin
the first stratum, 75 for a run from the second stratum, and 25 for a run from the third stratum, An
average value for this measure would be derived from weighting the output from a given run with
the total probabllity of any realiztion coming from within the stratum, In our example, we have
(125)(.3816) <+ (TB)(.6136) <+ (25)(.0048) = 03.84, This value, along with the range of values
produced by the three different runs (summarized perhaps with a weighted variance or other
statistic), should be much more meaningful than the value obtained by running FORCEM only for

some arbitrarily chosen input set for the nuclear exchange outcome,

[lowsver, a wotd of caution is necessary, We started with the assumption that theee is mope
than one significantly different outcomie In the theater context: in our example, there were three, A
single summary measure, such as the average, does not reflect this reality. Even a sample average
and variance will not inform a decislonmaker about the possible outcomes along with their
associated probabilities. Since the total number of runs of the theater conventional model will be (by
necessity) small, we recommend reporting all of the results, accotnpanied perhaps with a summary
measure, In cases of tactical nuclear warfare, we are often concerned with relatively unlikely events
(such ns the exchange itself) that nevertheless have a very signifieant impact. Averaging obsctres

this fact and can lead a decisionmaker astray,
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14. Summary. Using a deterministic, expected value approach to model a real-world situation such
as theater-level combat poses problems in selecting input data. A deterministic simulation demands
o single input data set for a model run, while the data may have to represent a process that is
inherently stochastic. An example is provided in this paper. The results of a tactical nuclear
exchange within a theater is inherently stochastic, driven by random events such as target
acquisitions. An “average’ exchange outcome cannot properly be defined; an average fails to exist in
subset selection problems (for example, if 20 units out of 50 are acquired on the average, which 20
are to be selected as acquired in the deterministic model?) Even where averages can be defined, they
fail to reflect impottant variations in possible outcomes that may make a difference between winning

and losing the war in a theater simulation.

Ideally, a theater-level stochastic model would be used to properly reflect uncertainties Inherent
in the data and processes represented by the model. However, the current state of the art in
hardware and software only permit us (&t present) to model combat at the theater in a
deterministic, low-resolution mode. Thus, we must reconcile the need to provide an Input to these

determinlstic models with the reality of random outcomes.

If there are approximately 10* potential nuclear targets in a theater, there are ‘.’.”"l possible
outcomes that can oceur in terms of the defeat or failure to defeat each potential target. Even if we
look only at the defeat or failure to defeat the low resolution aggregate units represented in onr
theater model, we still have on the order of ‘2“’3 possible outcomes, A classical experimental design
spproach that requites at least one run per vatiable obviously cannot be applied, The challenge,
then, is to construct a plan that minimizes the number of different input dats sets yet fully reflects

the range of possible outcomes of the theater nuclear exchange.

This paper outlines an approsch to constructing such an experimental plan, We begin with the
probability of defeating a potential nuclear target p,, ., (1) and determine from that the probahility
of defeating the aggregate units represented in our theater model (such as divisions). We can
characterize all possible outcomes of the exchange as sets of binary variables, where each binary
variable reflects the defeat or failure to defeat each unit. We then partition the outcome space into
strata such that outcomes from different strata lead to significantly different results in the theater
battle, and all significantly different outcomes are included in some stratum. Our experimental plan
consists of a nuclear exchange realization from each strata that corresponds to the most likely
outcomie within that stratum. The theater-level model is run using the experimental plan to

determine the appropriate input data set to use to refleet the outcome of a theater nuelear exchange,
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15, Directions for Future Research. The techniques outlined in this paper form only a start at trying

to resolve the issue of how to handle uncertainty in input to large, complex expected value models.
They are presently limited to input processes that can be summarized in a reasonable number of
binary variables, where it is possible to make a judgment about the type of expected value model
output given sets gf similar inpnt realizations. Nevertheless, it is a step in the right direction. At
present, it is not infrequent to find studies based on a single model run per input scenario, without

any estimate of the variability possible in the results obtained.

Possible future research topics include extending the techniques to processes that can he
expressed in various states, the number of such states exceeding two. Better ways of estimating
partitions of the sample space may also be developed. A very realistic case in many theater scenarios
involves repeated realizations of random processes (in the context of the nuclear exchanges discussed
in the paper, this would imply many small weapon exchanges over a relatively long period of time).
At present, we have no satisfactory way of handling this situation, Robust experimental plans that
can provide meaningful results over a large number of repeated realizations will be be necessary to

model such scenarios.
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Abstract

Stress analysis of the human femur involves uncertainties in material proper-
ties, geometry, loads and boundary conditions. It is desired to propagate these
uncertainties through the Finite Element Method of stress analysis in order to
obtain the distributions of stresses and displacements in the femur. This would
provide better insight into bone behavior and the design of bone implants.

In particular, data from CT scans is currently used to estimate the Young’s
modulus of bone. The CT number at any point within the cross-section is used
to estimate the apparent density at that point by means of a linear relationship.
Using experimental data published by previous researchers, Young’s modulus
is related to apparent density.

Randomness in stresses and displacements can be studied by either a First
Order-Second Moment method or by simulation. This paper compares the accu-
racy of FOSM with that of simulation for a simple deterministic 2-dimensional
geometry. It is observed that second moment analysis can be adequate for
predicting accurately the first two moments of the structural response.

Randomness in loading is much easier to analyze as compared to randomness
in Young’s modulus because stresses and displacements are linear functions of
the applied loads. This paper compares the relative importance of randomness
in loading to randomness in Young’s modulus. Numerical experiments with
random material properties show that randomness in Young’s modulus has
little influence on the randomness in stress when loading is also random.
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1 Introduction

A “standard” Finite Element Analysis assumes all input information to be determin-
istic. In particular, loads, geometry, material properties and boundary conditions are
assumed by the analyst, to be known precisely. Consequently, the results of such
an analysis are also deterministic. In reality, there is considerable variability in this
input data. This randomness affects the structural response. Frequently, designers
use a ‘factor of safety’ to offset their lack of knowledge of the probabilistic aspects of
the response,

Stochastic FEM models uncertain input information by means of random vari-
ables, The first two moments of the structural response can be obtained by a First
Order Second Moment method. Such a method van provide more detailed information
regarding the response as compared to the deterministic finite element method.

Finite element analysis of the femur is cr'vrently being performed assuming deter-
ministic input, in spite of experimental evidence suggesting considerable randomness
in this input data, A study of the effect of randomness in loading and material prop-
erties would help evaluate the accuracy of the deterministic solution, This paper
deals with the effect of randomness in loading and material properties on a simple
2-dimensional model of the proximal femur,

2 Probabilistic Structural Analysis

Probabilistic Structural Analysis deals with analysis of structures in the presence of
uncertainty, It can be used to calculate the first two moments or the distribution
functions of the structural response. Structural reliability theory aims at calculating
the probability of failure for structural systems. Since there are no closed-form ex-
pressions for stresses and displacements obtained by a finite element analysis, Monte
Carlo simulation [Shin 72] must be used to determine the distributions of the re-
. sponse. Since realistic structural analysis problems tend to be computationally inten-
sive and that detailed probabilistic information regarding the random input data is
rarely available, the approximate technique of First Order Second Moment (FOSM)
method is sometimes more suitable for stochastic finite element analysis.

Some of the eurliest work in this fleld dealt with eigenvalue problems involving
random media {Coll 69). Subsequently, stochastic finite element analysis has also been
applied to beams with random rigidity [Vanm 83b}, turbopump blades [Nagp 87, etc.

There are several methods of modeling randomness in material properties such as
Young's modulus. Vanmarcke [Vanm 83a] suggested modeling the random Young's
modulus field as a spatially varying stochastic process. The Young's modulus for a
finite element can then be obtained by an averaging of the stochastic field over the
finite element. Liu [Liu 86] modeled the Young's modulus within an elemeni by a
linear combinatinn of random Young's moduli at the nodes of the element. Yamazaki
[Yama 88] considered the Young's moduli at centroids of finite elements as random
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variables. Der Kiureghian [Kiur 88] compared the averaging method with the centroid
method and observed that these two methods tend to bound the exact response
variability; the centroid method usually over-estimates the variability whereas the
averaging method usually under-estimates it.

3 Analysis

There is considerable variability in the input data for structural analysis problems in
biomechanics. Young’s modulus in bone is currently estimated using CT (Computed
Tomcgraphy) scans. The grey value from these scans is used to estimate the apparent
density by a linear relationship. The apparent density is related to the Young's mod-
ulus by an experimentally determined non-linear relationship. There is considerable
variability in this experimental data. Therefore finite element models of the proximal
femur have Young’s moduli which are not deterministic. The grey values in a CT scan
are used to determine the geometry. Distinction between bone and tissue is is based
on a threshold which is chosen subjectively by the analyst. Hence the size of the bone
being analyzed is not deterministic. Moreover the exact location and magnitudes of
loads are not known precisely. .

The results of a finite element analysis are affected by all these random inputs.
Stochastic finite element analysis can be used to determine the amount of randomness
in the response, Structural reliability can be used to determine the probability of
failure. But in structural analysis of biomechanical systems, where the modeling
uncertainties and approximations are high, a reliubility index or a probability of failure
could be very inaccurate. Modeling approximations include use of linear elastic finite
element analysis instead of non-linear visco-elastic finite element analysis, isotropic
material models instead of transversely isotropic material models, etc,

The present study was aimed at comparing simulation and FOSM for finite ele-
ment analysis of the proximal femur. Also, the relative importance of randomness
in material properties and loading was also studied. A typical coarse 3-D finite el-
ement model for the proximal femur contains about 300 elements and 1200 nodes.
Stochastic finite element analysis of such problems is therefore too expensive. Hence
it was decided to analyze a 2D plane strain model of the proximal femur instead.
Deterministic analyses performed on both these models indicate that the results from
a 2D model are qualitativaly the same as those obtained from a 3D model.

The random Young’s modulus field was modeled using the Young's modulus in
each finite element as a random variable. Since the variability in Young’s modulus is
very high, uncorrelated fluctuations in Young's modulus in adjacent finite elements
can give very unrealistic material property distributions. Therefore it was necessary
to assume that the Young's moduli in different elements were correlated by a spa-
tially varying correlation function. An exponentially decaying correlation function of
the form e~#/L (where L is the “correlation length”) was chosen because of the “intu-
itive” feeling that Young's moduli in elements close-by should not vary independently,
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Figure 1: Variation in standard deviation of displacements

whereas Young'’s moduli in elements far apart could be almost uncorrelated.
Preliminary analyses showed that correlation length plays a very important role
in determining the amount of randomness in the response. Figure 1 and figure 2
show the variation in the standard deviation of displacements and stresses with the
correlation length for a typical plane-strain analysis. With an increase in correlation,
stresses tend to become deterministic because stresses are independent of Young's
moduli, provided the Young's moduli are changed uniformly by a constant factor.
However the displacements in this case have maximum variability. When there is
little correlation between Young's moduli, the displacements are less random but the
stresses are more random. There is a considerable change in the standard deviation
of the response from a fully correlated to a fully uncorrelated case. In order to
obtain accurate second moments of the response, one must use a correlation function.
However, the correlation function in this case must be based on experimental data.
Figure 3 shows the measured pairs of Young's modulus and apparent density
[Cart 77). The power law relationship shown is currently being used to predict the
Young's modulus given apparent density. However this data cannot be used to de-
termine a correiation function because these samples are uncorrelated and their po-
sitional data is not available. Another experimental study made by Goldstein et.
al. [Gold 89) gives apparent density and Young’s modulus for 8 mm specimens in
the proximal and distal femur. Figure 4 compares the data presented in [Cart 77]
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Figure 4 Comparison of data in [Cart 77) and [Gold 89]

and [Gold 89]. These two sets of data do not appear to be consistent, This can be
attributed to the following :

1. The specimens in [Cart 77] came from both human as well as bovine bone,
2. [Gold 89] does not contain any data tor cortical bone.

3. [Cart 7] contains both fresh and embalmed sp: cimens from different investiga-
tors who probably performed experiments unaer different test conditions.

It was therefore decided to use the positional data of these specimens to esti-
mate the correlation function, regression coefficients and variance by the method of
maximum likelihood.

The following relationship was assumed to exist between the Young's modulus
(E) and the apparent density (p)

In(E) m A4 Bln(p) + ¢ (1)
which can be written as.

YV=A+BX+¢ ' (2)
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where ¥ = In(E') and X = In(p); A and B are unknown regression coefficients and
e ~ N(0,0?) is a normally distributed random error. This is consistent with the linear
regression on a log-log scale performed in [Cart 77]. 332 specimens were obtained from
the left and right proximal and distal femurs of two cadavers ([Gold 89]).

Therefore we have

yi=A+Bz;+¢ , i=1 to 332 (3)
The following correlation function was chosen for the random errors ¢’s :
COVle, ¢;] = E[eie;] = e~ 5.0 (4)

where d is the Euclidean distance between the centers of specimens 7 and j.
The above correlation function is used with the following restrictions:

¢ There is no correlation between the errors ¢; from the proximal femur to the
distal femur.

o There is no correlation between the errors ¢; from the left leg to the right leg.
o There is no correlation between the errors ¢; from one person to another,

The problem can now be stated in matrix form as follows :

Y=X6+¢ (5)
where
n 1 o &
val ¥ x=|!® ﬂ:—.(“l) e | @ (6)
/ 2x1
In /i N L /L, €n /oy
n = 332 (7)
and
E[Y] = E[XQ) + Ele] = X4 (8)
E[(Y = XB)(Y — XB)] = Elee’] = 02V (9)

where V = f(L) and L is the “correlation length”, Maximum likelihood estimates
for the parameters A, B, ¢ and L were calculated [Chin 89)].
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4 Results

The maximum likelihood estimates obtained are given below:

= 16,32 mm

6.82

1.4676 (10)
¢ = 0313

o oo o
it

it

The relationship between E and p (shown in Figure 4) can now be written as
E = 916p'19™ (11)

where e ~ N(0,4?).

Figure 5 shows the distribution of Young’s modulus in the proximal femur with
an implant. Titanium was chosen as the implant material and its Young's modulus
(= 110 Mpa) is deterministic.

This problem was solved using both FOSM and simulation. For any function f(z)
(such as displacement or stress) of the random variables g (here, Young’s moduli),
a Taylor series expansion can be performed about the mean values of the random
variables:

T
£(@) = £(2) + (%) (-2 (12)
This yields
Elf(@)] = £@) (13)
T
Var(f(z)] = (%ﬁ) Cex (g—i-) (14)

where C,, is the covariance matrix of the input variables and g is the mean vector,
The mean response is thus the usual deterministic response, This analysis ignores the
distribution function of g and the non-linearity of f(g). It is however computationally
much faster than simulation, Simulation and FOSM results on plane-strain analyses
of the proximal femur indicate that FOSM is sufficiently accurate in predicting the
first two moments of the response. The error in mean and standard deviations of
stresses was usually well under 5 percent. Figure 6 compares graphically the stan-
dard deviations of the stress in the inferior-superior direction obtained by these two
methods. Moreover, the marginal distribution of stress at any point was very close
to a Gaussian distribution. This suggests that in spite of the approximations made
in FOSM analysis, FOSM can be used as a reliable alternative to simulation.
The coefficient of variation can be defined as :
standard deviation

coefficient of variation = (15)
mean
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The coefficient of variation of stress as a result of randomness in Young's modulus
was about a third of that of Young’s modulus. This suggests that stresses are not as
random as the Young’s moduli.

Randomness in loading is easier to analyze because stresses and displacements are
linear functions of the magnitudes of the applied loads. Thus FOSM analysis can
accurately calculate the first two moments of the response. Moreover, the coefficient
of variation of stresses (or displacements) is the same as the coefficient of variation of
the applied loads, provided the applied loads are fully correlated. Since the applied
load is not correlated to the Young's modulus, the resulting randomness in stress
is dorninated by the randomness in loading, Moreover if the loads are Gaussian,
the resulting stresses and displacements will also be Gaussian and FOSM will again
produce accurate results,

5 Conclusion

This paper studies the effect of uncertainties in material properties and loading on
stresses and displacements in the proximal femur. Simulation studies showed that the
approximate method of First Order Second Moment analysis can predict accurately
the first two moments of the response. The resulting marginal distribution of stress
was very close to being Gaussian. When the applied loads are deterministic and
the Young's moduli are random, the coefficient of variation of stresses was found to
be much less than that of Young's modulus. Since stresses are linear functions of
the applied loads the coefficient of variation of stresses is equal to the coefficient of
variation of the applied loads when the Young’s moduli are deterministic. When both
Young's moduli and applied loads are random, the randomness in loads dominates
randomness in Young's modulus. Hence the resulting response can be predicted
accurately by modeling randomness in loading alone.
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Nonparametric Inference Under Minimal Repair

Myles Hollander
Brett Presnell
Jayaram Sethuraman
Department of Statistics
Florida State University
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Abstract

This paper summarizes the results presented at the Army Research Workshop held .
at Monterey, CA in October, 1989, A more detalled version will appear elsewhere.

In the age-dependent minimal repair model of Block, Borges, and Savits (1985),
a system falling at age ¢ undergoes one of two types of repair. With probability
#(t), a perfect repair Is performed, and the system is returned to the ‘good-as-new’
state, while with probability 1 — p(t), a minimal repair is performed, and the sys-
tem Is repaired, but Is only as good as & working system of age t. Whitaker and
Samaniego (1989) propose an estimator for the system life distribution F' when data
are collected under this model.

Using the product integral representation of the survival function, a basic result
of Block, Borges, and Savits concerning the waiting time until the first perfect repair
Is extended to allow for discontinuous distributions, Then using counting process
techniques, the large sample theorems of Whitaker and Samaniego are extended to
the whole line. These results are used to derive confidence bands for F, and to
determine a sufficient condition for their applicability on the whole line. Simulation
results for the bands are provided. An extension of the Wilcoxon two-sample test to
the minimal repair model is also examined.

1 The Minimal Repair Model

To fix notation, let F be a life distribution, let rr be the upper endpoint of the support of F
(possibly infinite), and let A(t) = fo(F(s—))~'dF(s) be the cumulative bazard function
of F,where =1~ F,

Now, for j = 1,...,n, let {X,;o = 0,X;4,Xj3,...} be independent record value
processes from F. These are Markov processes with P(X;s > t | Xj0,..., Xja1) =
F(t)/ F(Xjn-1), for t > Xju1, k 2 1. L AF(rr) > 0, define X;; = oo for all [ larger than
the first k for which X;x = 7r. In all cases we take p(7r) = 1. These processes represent
the failure ages of n systems under a “forever minimal repair” scheme.
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" Perfect repair is introduced into this model by the use of independent uniform random
variables. This facilitates the construction of the o-field structure (filtrations) necessary
to our analysis of the model through martingale methods. Thus welet {Ujx:1 <5 <
n,k 21}, beilid. uniform r.v.’s, and define

8in = I(Ujp < p( X))y

v;minf{k:6;,=1}.

Thus observing {(Xj1, .., X;u,)ij = 1,...,n}, is equivalent to observing n indepen.
dent copies of the a2ge-dependent minmal repair process of Block, Borges, and Savits
(BBS)(1985), each until the time of its first perfect repair.

This structure provides us with a concrete starting point for a statistical analysis of the
BBS model. However, we need conditions which are sufficient to assure the finiteness of
Xju;+ Such conditions are given by the following result, which generalizes a result of BBS to
the case of possibly discontinuous F'. Though this generalization may not be important for
modeling system failures, it will be useful to us in proving large sample results. Also, the
proof of this result, which we sketch below, is more straightforward than the original proof
of BBS. The reader is referred to Hollander, Proschan, and Sethuraman (1989) (HPS), for
detailed proofs of this and other results in this paper.

Proposition 1 Let H(t) = P(X, £ {,v < ). Then
A(t) = [yl -dAn)

= (- 70 B (- 05)

ot
Moreover, if either

(i) AF(rr) > 0 (and p(r) = 1),
or
(it) F(rr=) = 1 and [5* p(s) 7L = +00,

then H is a proper distribution function and v is almost surely finite. Conversely, if H is
a proper distribution function, then either (i) or (ii) must hold.

Proof. (Sketch) Note that
A(t) = 1-P(X, St,v< o)
o0
= ] :P(X,' <ty =j)

jm

A conditioning argument shows that

F=143 [oo] date)-daty),

J=1 05ty <<ty St
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where
dF(s
at) = (o.‘](l-w(-')) W)

This is equivalent to
%(%% = [Tjo,4(1 + da) = exp (a(t)) 'I;I‘(l + Aa(s)),

where o' is the continuous part of @ and Aa(t) is the jump in « at t. Here, [Tjo4(1 + da)
represents a product integral. The theory of product integration with applications in
statistics is reviewed in Gill and Johansen (1987). The result follows from the lasi =quation

after soine algebra. O
We will say that a pair satisfying either (i) or (ii) describes a regular repair scheme.

2 The Whitaker-Samaniego Estimator :

In this section, we derive a martingale representation for the Whitaker-Samaniego (1989)
estimator (WSE). This representation is then used in conjunction with Rebolledo's Mar-
tingale Central Limit Theorein and the techniques of Gill (1983) to derive limit theorems
for the WSE,

The Basic Martingale

Define
Ni(t) m dh{k: X St}

and
Foo= o({Nj(s):eSt,155<n))
V e({Ua:k21,1<j<n}).
For the rest of this paper, ()0 Will serve as the underlying filtration for all martingales.
Now let
N(t) = #{(j, k) : Xju St,k S ;1S j < n},
“ Y(f)ﬂ#{j:x,',y,Zf,ISan},

and
M(t) = N(t) - /M Y(a) dA(s). .

In HPS, it is shown that M is a locally square-integrable martingale with predictable
quadratic variation given by

(M)(1) = [ Y(5)(1 = AA(s))dA(s). 1)

This provides the basic martingale structure for further analysis of the minimal repair
model.
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A Martingale Representation for the WSE

Assume that F is continuous and that the pair (F,p) describes a regular repair scheme.
Let X be the kB ordered value of the set {Xin:k<v;1€5Sn}, let

T = min{ Xy : Y(X(y) = 1},
and let J(8) = I(s < T), Then the Whitaker-Samaniego estimator (WSE) can be written
as
P(t) = Mo g(1 = dA) = 1;1 (1-aA()),
St

where

A(t) m /( i VG )dN( )

Using Dubammel's equation (Gill and Johansen, 1989), (F' = F)/F can be expressed
as an integral with respect to the martingale M:

P(t) - F(2) / Plo-) . M),
(t) 1‘(-')5’('
From this and (1) it follows (# — F)/F is itself a locally square-integrable martingale with
predictable quadratic variation process given by

P-F / (F(a-))ﬂ dF(s)
F ea\F(s=)) Fs)Y(s)’
This quadratic variation process essentially serves to identify the covariance structure of
the limiting Gaussian processes derived in the next section.

Large Sample Results

With the above representation, Rebolledo’s martingale CLT and the methods of Gill(1983)
yield the following result, which extends Theorem 3.3 of Whitaker and Samaniego (1989)
to the whole line.

Theorem 1 Let (F,p) describe a regular repair scheme, with F continuous. Then the
Jollowing hold:

(i) Asn — oo,

V(P -F) 2 P.B(C) inD[0,),

where B is Brownian motion on [0,00), and
¢t dF(s
9= | sy
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(if) Asn — oo,

fn'%(F -F) 2 BK) inD[0,00),
where B® is Brownian bridge on [0,1], and K = C/(1 + C).

Details of the proof of this theorem are given in HPS. We note here that the proof of
(i) does not require any additional conditions beyond regularity of the repair scheme. This
is in contrast with the analogous result of Gill (1983) for the Kap!an-Meier estimator in
the usual censored survival data model, where some condition on the amount of censoring
is needed. We will see below however, that an additional condition limiting the amount of
imperfect repair is needed to assure convergence of the expression in (1i) when an estimate

is substituted for K/F.

3 Applications

In this section, the asymptotic results of the last section are used to derjve large sample
confidence bands for F' and to obtain the limiting distribution of an extension of the
Mann-Whitney-Wilcoxon test statistic to the minimal repair model.

Confidence Bands

The result in part (ii) of Theorem 1 suggests confidence bands based on the distribution
of the supremum of Brownian bridge. It is necessary however to estimate £ /F in order
to construct the bands. Let H be the empirical cdf of the X;,,, and let K=/ + 0),

where € is defined by ’
dF'(s
%= foa TR

N %(F ~F) 2 BYK) in D'0,00), as n = o0, 2)

We would like to have

in order to justify asymptotic (1 - a) x 100% confidence bands for F of the form
Pz R,

where A, is the upper ath quantile of the distribution of sup | BY(t)).
We can show that (2) holds on [0, 7] for any 7 < 7p, but for the complete result, some
additional condition seems to be needed. Using the result of Prop.1, it is shown in HPS

that K/F and K /P are nondecreasing and that

15;'5% and 1<
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Using this, it can be shown that a sufficient condition for (2) is that

A(re=)
T = /(w)u ~ p(s)) dA(s) < oo,
This condition requires that p(t) — 1 as ¢ T 7r (at a rate sufficient for the convergence of
the integral), and hence provides a limit on the amount of imperfect repair,

Simulation results for the bands computed over finite intervals (in the case of constant
p) indicate that coverage probabilities are quite good for sample sizes of 50 or more. This
will of course vary with the parameters of the model. Simulations were carried out with
both Gamma and Weibull F, with varying shape parameters, and with various values
of p, various interval lengths, and various nominal confidence levels. As an example, the
following table gives the simulated coverage probabilities for nominal 95% confidence bands
over the interval [0, 4.744] when the underlying F is Gamma with shape parameter 2. (Note
that 4.774 is the ninety-fifth percentile of Gamma(2).) More extensive tables are provided
in HPS,

n [pm.30 | pm=m.28|p=. 10
10 | 9028 | .8660 | .8710 |
20 | 9270 | 9125 | .9187
30 | .9460 | .9287 | .9327
50 ( .9518 | .9398 | .939%
100 | .9528 | .9540 | .9482
200 | .95185 | .9517 | .9495

An Extension of the Mann-Whitney-Wilcoxon Test

Using part (i) of Theorem 1, it is also possible to obtain the limiting distribution for
an adaptation of the Mann- Whitney.Wilcoxon two-sample statistic to the minimal repair
model. Here we assume that for § m 1,2, we observe n; BBS processes from (F;,p;), each
until its first perfect repair, In general we wish to test the null hypothesis Ho: [} = F,
with typical one-sided alternatives specifying fFydF; > 1/2, and two-sided alternatives
specifying [Fy dF; # 1/2.

A statistic analogous to the Mann-Whitney form of the Wilcoxon two-sample test
statistic is W, as given by

W = /Fx dp,
- - AN;!J!
N O

where F; is the WSE, AN;(s) is the number of failures at age s, and Y(s) is the num-
ber of items at risk at age s in the i*t sample. This statistic is a patural estimator
of [dFy; = P(X; € X3), where X, and X, are independent random variables, with
Xi ~ F,. Assuming continuous distributions, P(X; £ X;) = 1/2 under Hy, and in the
one-sided case, significantly large values of W provide evidence against Hy in the direction
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of [FydF; > 1/2. For large sample sizes, we have the following result, which is proven in
HPS:

Theorern 2 [f F) and F; are continuous, and the pairs (Fl,p;) and (F3, pa) describe reg-
ular repair schemes, and if ny,ny — o0 in such a way thot D= ¥ A 0<A<],

then Vi (W= [RdR] 2 5 (o, Soi+ Tl:i"g) , (3)
where

o = 2 ["RAMC dR(s)dA(),

@ = 2 [T BRECK) dF(s)aR(t).
Under the null hypothesis, Ho : Fy m F = Fj,

o =2 [" F)Ci(1) ( J " F(s)dF(a)) dF () w & /

For purposes of testing the null hypothesis in the large umple cue, we thus propose

referring the test statistic
1\ (82, #\}
- AR )
-z- (W 2)/(81 + n;)

to a standard normal distribution, where

dugh ;%‘-'_lam.)-a; s FeReane

ANi(e)>0

and H; is the empirical distribution of the perfect repair ages in the i** sample.

It is shown in HPS that the o; are consistent, which justifies the use of this test. If
the p; are constants (see Brown-Proschan (1983)), the above expressions simplify greatly
under Hy. If F, m F) = F, then A; = F?' and the asymptotic variance in (3) reduces to

i‘v:’ +Ti—,\’3 - ili (4(4-1-1».)) * 11A (4(4 im))'

The p;'s are of course consistently estimated by their MLE's, , the ratio of n; to the total
number of failures in the it® umple, and for large umplu, the statistic 2/, given by
1/2

i (‘ dF'(a)

zl

-3)/ [4n,(4 ) T inai - h)]
can be referred to a ltand;rd normal distribution in order to test the null hypothesis. Note
aleo that if py = p; m 1, then we are in the usual i.i.d. two-sample model, the WSE's
reduce to the empirical c.4.f.’s, and W is just a multiple of the Mann-Whitney form of the
Wilcoxon rank-sum statistic. In this case, the above results yield

(v-3/ a6+ > wo

in agreement with the usual results for the Mann-Whitney-Wilcoxon test.
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THE APPLICATION OF A COMPOSITE DESIGN TO
TEST A COMBAT SIMULATION MODEL
Carl B. Bates
US Army Concepts Analysis Agency
Bethesda, Maryland 20814-2797

ABSTRACT. A study is to be performed that involves the determination of a
mix of target acquisition}systems that yields an'improved capability at a
lesser cost. A primary candidate for the combat simulation is a two-sided
deterministic division-level ground combat model. Before the model could be
used in tﬁe study, the model had to be tested to determine its capability to
evaluate the combat effectiveness of mixes of target acquisition systems.
The test involved four factors, one qualftative and three quantitative
factors. Time constraints 1imited the number of simulations to 30 runs. A
composite design is presented, its application is illustrated, and its

efficiency is discussed.

1. INTRODUCTION. The test was to assess the sensitivity of model

output to specified changes in input values for the four selected input

factors. The four factors are:

TYP - Type of sensor,

FRC - The fraction of target elements for which the sensor has both
coverage and 1ine-of-sight,

TIM - The time, in minutes, that a sensor spends processing and
reporting a target it has detected,

NUM - The total number of sensors employed in a model run.
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Two types (A and B) of sensors were to be evaluated. Three values were
ultimately selected for each of the three quantitative factors., The minimum
and maximum from operational performance were taken as the lower and upper

values. A "middle" value was then added. The values are:

FRC - 0.1, 0.5, 0.9,
TIM - 0O, §, 10.
NUM he 5' 15, 25.

This gave a 2x3x3x3 full design. Time constraints, however, would permit
only 30 runs'for the complete test.

2, EXPERIMENTAL DESIGN. Therefore, the objective is to develop an
experimental design with not more than 30 design points. The design should
permit assessment of a full second-order model in the three quantitative
factors. Draper and John (1988) discuss response surface designs for
quantitative and qualitative variables. They give some first and second-
order designs for 2k factorials and 2k-P fractional factorials. The decision
was mada, however, that a single model involving TYP had no advantage over
two models, one for each of the two types of sensors. Now the problem .is to
develop a response surface design (one of each sensor type) for the three

three-level quantitative factors.

Let the three variables X1, X2, and X3 represent the three quantitative

factors. The second-order model we wish to investigate is:

=B+ BX 4B+ B X+ B X1+ BygX+ BygXa+ B (X X o+ BruX X+ BynX X e

14




The 27 design points of the full 3x3x3 design are shown in Figure 1, The
iow, middle, and high values of the three variables are denoted by "0", "1",
and "2", respectively. The eight corner points, (000), (200), (020), (220),
(002), (202), (022), and (222), would be a full 23 design if there were no
middle values. I[f these eight points are augnented with the center point
(111) and the six center points of each plane, (211), (011), (101), (121),
(110), and (112), we have a design similar to a central composite design.
The design 1s given in Table 1 and 11lustrated in Figure 2. Box and Wilson
(1951) introduced the concepts of composite designs. Myers (1971) and Box
and Draper (1987) discuss second-order composite designs. Myers, Khuri, and

Carter (1989) discuss recent and current response surface methodology

research.




X1

Figure 1. 3X3X3 Design
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Table 1. Three-variable Composite Design

Run # X1 X2 X3
1 0 0 0
2 2 0 0
3 0 2 0
4 2 2 0
5 0 0 > Corners
6 2 0 2
7 0 2 2
8 2 2 2
9 2 1 1
10 0 1 1
11 1 0 1 Star
12 1 2 1
13 1 1 0
14 1 1 2
15 1 1 1 Center

A three-variable central composite design is given in Table 2. The
1iterature on central composite designs discusses determining the value of a

to yield orthogonal designs. The value of a is the length of the axial

points shown in Figure 3.




(0,2,2)

A TR AN

--------------------------------------

(2,2,0)
X1

Figure 2. Composite Design
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Table 2. Three-variable Central Composite Design

Run # X1 X2 X3
1 -1 -1 -1
2 -1 -1 1
3 -1 1 -1
4 -1 1 1 23 factoral
5 1 -1 -1
6 1 -1 1
7 1 -1
8 l 1
9 -a 0
10 +a 0
1 0 = g Axial
12 0 +a 0
13 0 0 -a
14 0 0 +a
15 0 0 0 Center
3. _DESIGN EFFICIENCY. Myers (1971) discusses the efficiency of central

composite designs (ccd) and shows that a three variable orthogonal ccd is as
efficient as a 33 factorial design for estimating the mixed quadratic
coefficients. The results, however, apply to only orthogonal ccd and do not

apply to the restrained composite design in Table 1.

Because no information could be found on the efficiency of the
restrained composite design, a cursory evaluation was made of the design.
ACED, Algorithms for the Construction of Experimental Designs, developed by
Welch (1985) was used for the evaluation. Welch (1984) generalizes
Mitchell's DETMAX algorithm and discusses ACED. ACED has four optimality
criteria, D Optimality (DO), Average Variance of the Response Estimates (AV),
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O-f== Axial

l

Figure 3. Central Composite Design

Maximum Variance of the Response Estimators (MV), and Average Mean Squared
Error of the Rasponse Estimators (AM). AM was selected as the evaluation
criterion because it provided a robust balance between variance and hias.

The AM criterion 1s discussed in Welch (1983),

The variances of the parameters estimates (bs) of the second-order model

are:

V(bg) = 12.0
V(b1) = 28.6
V(biy) = 5.8
V(biy) = 1.9
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The variance efficiency is 99.6% and the bias efficiency is 91.6%.

Since these efficiencies were considered acceptable and time constraints
precluded further evaluation or design development, the composite design in

Table 1 was employed.

4. APPLICATION. The model was exercised for each sensor type for each
of the 15 design points in Table 1. Several output variables were extracted
and analyzed. Testing was performed at the 0.05-level of s1gn1f1cgnce. One
data set, Red personnel losses, 18 shown in Table 3., The significant model

was considered to be:

Y=941.2+1771.1X, +483.5X 0,543~ 196.3X X,

The unadjusted R2 was 0.90. The residuals (yi-Y{) ranged from -743 to 568.

The observed and the predicted values are shown in Figure 4., The confidence

fntervals on Y ranged from +481 to +701.




Table 3. Red Personnel Losses with Sensor A

Run # X1 X2 X3 y
1 0.1 0 5 1471
2 0.9 0 5 2333
3 0.1 10 5 919
4 0.9 10 5 1615
5 0.1 0 25 4313
6 0.9 0 25 2596
7 0.1 10 25 5159
8 0.9 10 25 2153
9 0.9 5 15 2670
10 0.1 5 15 4201
11 0.5 0 16 4038
12 0.5 10 15 2835
13 0.5 5 5 1823
14 - 0.5 5 . 28 3858
15 0.5 5 15 4146

The analysis results of this output variable is shown only to {llustrate
application of the composite design, not to {1lustrate goodness of the final
fit.
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Figure 4. Observed and Predicted (y,Y) Values



5. SUMMARY. The 12-point Box-Behnken design which is the complement of
the 15-point composite design used was not considered. It may have provided
a more efficient design. Also not considered was shortening the six axial
points to give five levels for each of the variables. This may, too, have
been a superior design to the design employed. The 15-point composite design

employed was considered to be appropriate for the purpose of evaluating a

second-order model.
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Distribution Theory for Variance Components
Estimation Diagnostics
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Abstract

Distribution theory is developed for diagnostics used to investigate
variance vomponent estimates and model assumptions in mixed or random
models. Estimation of variance components in a given model is the

0 equivalent of estimation of certain linear functions thereof. Each

| such linear function is realized as an average of natural sample
covariances, that may be independent or correlated. The distribution
of the set of these sample covariances is developed in both cases,
thereby giving a formal basis for a diagnostic vrocedure that has been
used to identify sources of negative variance component estimates and
to reveal model deficiencies. This mixed or random analog of residual
analysis, complete with diagnostic tools, is presented. This involves,
in part, a re-examination of the model for mixed or random effects.
The distribution applies to any random or mixed mudel and is

illustrated here in actual repeated measures experiments and validated

by simulations.




11 Introduction

The problem of estimating variance components is the equivalent of

the problem of estimating the covariance, 6, between appropriately
related observations. As alluded to in Hocking (1989), the estimate

is an average of sample covariances, individually referred to herein

as diagnostics, or is a simple linear function of such averages.

Therefore, the development of the distribution theory for the variance

component diagnostics will focus on the development of the distribution
of the sample covariances. It will be useful to consider these
as bilinear forms. For example, consider a three-factor factorial

experiment with factor | random and factors 2 and 3 fixed. To estimate

6, = ¢,, a sample covariance of the form

C = oy x T(Tik. - TJ)TP, - V.10

is used, inwhich pj* and kek* This sample covariance can be written

written as a bilinear form
1/(n)(Z,'AZ,), with Z,' = (Tijk.),, Z;' = R(IMKR),
Aml, -1, /8 and n =g -1

Equivalently, the bilinear fortn can be written
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v 20z % 41 [2 ] (LY

Except for rearranging indices, the bilinear form associated with any

diagnostic can be written as (1.1), For simplicity, the examples

discussed assume a three-factor model, but the methodology is general.

If a nonfactorial model is assumed, still with only one
random factor and it is not nested, then a sample covariance of thas

form C is still appropriate. However, depending on the nesting, one
of the conditions j % j'. K # k' might be relaxed. In the case
of four or more factors, the same results hold, so long as there is

only one random factor (other than replication) and it is not nested.

The distribution of Z'|AZ, depends on the covariance
structure of (Z,',Z,'). There are two cases to consider. If there is
only one random factor, such as factor 1, then

(Z$,2y) ~N (# V), inwhich 4 = (4, 8,), ond

al ol
V- (cl al

with each of a and ¢ being a simple linear function of the variancs

components,

If factor | is not the only random factor, V may be more
complex and the diagnostics are non-independent paired observations.

This case will be discussed in ssction two,
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1.2 Background

The first explicit density function for the bilinear form,
3 L R
Cm ‘Zl(Yijk.-?.jk.)(?uk.-Y.Jk.)/n,

with n = (a;=1) was developed by Pearson, Jeffery, and Elderton in 1929
based on independent sample pairs (¥ik.,¥ij’k’) having a

bivariate normal distribution with the variance-covariance structure

of V' below. In summary, they used the result that if ¥ijk. and

?ij'k'. are jointly normally distributed random variables, with

expected values Hy and By respectively, and covariance
e e)
¢c alJ’
then the conditional distribution of Yijk., given ?ij'k' is normal with

expectad value (u1+p) (Yuk -4,) and standard deviation a(l-ﬂ)‘/ 2
Thus, the conditional distribution of C, given the a, vector (?ijk.)
is normal with expected value (p)S and standard deviation (a(l-p’)S)" ’,

where N

1 LA ] LA a
S El (Pijk. - ¥.jk.)

As S is distributed (a)x’(.l_l). the probability density function of C is

o) = E‘s""‘” Texp(-5/(28)

(2m) % "’(l A by (20 T R (-2

1/3 ]
ne-(m’“S)/a
exp [- 2a(1-P)S ]dS. (1.2)
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Various other methods of deriving the distribution have been

demonstrated by Wishart and Bartlett (1932), Hirschfeld (1937), and
Mahalanobis, Bose, and Roy (1937).

Press (1967) presented some other equivalent forms of the
density (1.3). Defining a sample of N independent observations

(Zygy Zyg)soor (Znyy Zyg) from Ny(p, V'), he found that for n = N-I,

n (F - ,l)nlﬂ(ngfﬂ'l)/ie-mc

f -
T g Viggay)

K(n.l)/,(lnq)v (1'3)

inwhich K (z) denotes a modified Bessel function, 8 = v n,

where 7 and n are functions of p and the common variance (a) of

the Z's, and are equal to 7 = (a(1-p)1"\n = (a(1-p)]"%,

T = gb, and p = ¢/a inwhich ¢ is the covariance of the Z's and a

the variance. When « is an integer, the Bessel function is referred

to as & modified Bessel function, and when a is an odd half-integer, it
is referred to as a modified spherical Bessel function of fractional order
or a Bessel function of the third kind. When the number of degrees of

freedom n is even, it is possible to express the density of C in terms

of elementary functions and to calculate the exact expression since

(:3/2 n(n-5)/2 + )
Eo IGe) D((n-5)/2-) (2z)7

Kpagya®) = (/(20)) /%8

Press (1967) provided formulae for computing the exact

cumvlative distribution function of the sample covariance for an even




ar

number of degrees of freedom. In addition, percentage points of the
C distribution for seven values of n and p = 0 were tabulated,
However, for an arbitrary sampie size, Press states that the
probability density function of C "is a complicated expression which
is difficult to evaluate." To evaluate the probability density
function, it was necessary to develop an efficient formula for
calculating the distribution function of the covariance utilizing the

recursive properties of the Bessel function,

.3 Distribution of the Sample Covariance for all Sample Sizes

In deveioping the computational formula of the distribution,
two cases had to be considered, For the first case, N is even, and
(N-2)/2 is an integer. The second case is that N is odd, Thus, the
caloulation of the probability density function requires calculation

of the modified Bessel function for both integer and fractional order,
The computation of the modified Bessel function of integer

order requires two polynomial approximations for order 0 and 1, which

will be referred to in this paper as ky(y) and ky(y), respectively. These
approximations are precise to at least 1x10"%, The approximations are
defined in Abramowitz and Stegun (1964). From ky(y) and k(y) and

results in Abrumowitz and Stegun (1964), the fcllowing recursive

formul.: may be developed:
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kina1)(¥) = (20/Y) Ky(y) + 1 () (1.4)
For example, ky(y) = (2/y) ky(y) + ky(y),

and ky(y) = (4) ky(y) + k().

The above formula (1.4) is ugeful in calculating the
values of the (n-1)/2 order Bessel function, To determine the value
of the Bessel function for fractional order the following relationship

found in Abramowitz and Stegun ( 1964)' was used:

x K - ﬂ' m*k'l !
(%) [ﬂ,-l-)(”) T Ki(m-k-1)(2y)
Given the values of the Bessel function for a fixed n, the probability

density function of the distribution (1.3) was easily evaluated.

1.4 Caleulation of CDF

The cumulative distribution function was computed using

Simpson's integration method. Simpson's method of numerical

integration approximates the probability density function by

a set of parabolas., In general, Simpson’s rule gives

f:t‘(x)dx - (fo+f +4i): fJ+2 L fJ ]A-SL

ovan

where Ax = (b-a)/n, f; = f(a+jAx).




1.5 Tabulated Cumulative Distribution for the Diagnostics

Critical percentile points of the covariance distribution for
p ranging between -0.9 to 0.9 in increments of 0.1, with the sample
size N between 2 to 10, 15, 20, 25, 30, 40 and 50, and the variances
equal to one are contained in Grynovicki (1989). Specifically, this
paper gives the value of C,, such that P[C 5 C,,,] = &, for a = (.01,
0.05, 0.10, 0.90, 0.95, and 0,99 inwhich C is the sample covariance
from a bivariate normal with mean 0 and indicated variance-covariance

matrix V.,

1.6 CDF Program for Diagnostics

A computer program to calculate the cumulative distribution of
the sample covariance (C/(N-1)) or equivalently the variance component
diagnostics is presented in Grynovicki (1989). The program is written
in Turbo-Pascal Version 4.0% ses Miller (1987), and can be compiled
and run on any I1BM-compatible or Maclntosh personal computer provided

Turbo-Pascal 4.0 ia available. The program utilizes Simpson's

integration method and calculates the cdf using a tolerance of 1078,




1.7 Yalidation of Distribution '

For p = -0.9 to 0.9, in increments of 0.1 and for sample size

N = 2 to 10, and 50, a random sample of 1,000 sample covariances from
a bivariate normal were generated as follow. First, three sets of
1,000 independent standard normal variates (Y,, Y, Y,) were
generated using the Box-Muller transform, Second, 1,000xN independent
samples from a bivariate normal distribution were generated with
specified variances and a covariance using the transformation

Z' = oy (8in (Ay) Y, + cos (A;) Y, ) and

2% = 0, (sin (A;) Yy + cos (Ag) Y3)

in which

A= arccos[(laml/(aicr,))ll ’], and
Ag = A if o3 2 0,
=% - A if 63 <0
Finally, the 1,000 covariances were calculated by sequentially
selecting 1,000 pairs (Z*, Z*%) of N-vectors and calculating the
covariance Z*'AZ¥,, where A = I-JJ'/N, I is NxN identity matrix,

and J is a N column vector of I's.

As a partial check of the density function, a comparison of
the simulation and actual distribution was made using the Kolmogorov-

Smirnov one-sample goodness-cf-fit test, The test statistic is

D « maximum [F(x) -~ S(x) |, -00 < x < o9,




inwhich F and S are the theoretical and simulated distribution
functions, respectively., For a sample size of 1,000, the critical
value of this statistic is 0.043 at a = 0,08,

Comparison of the theoretical and simulated values was made
for values of N from 2 to 10 and 50 for values of p in increments of
0.1, between -0.9 and 0.9, and for variances equal to one. Two SAS
computer programs were written to generate the simulated value and to
calculate the Kolmogorov-Smirnov maximum deviation statistic. These

programs are contained in Grynovicki (1989).

The caloulated D for the specified parameters can be found in
Grynovicki (1989). All 190 simulations were determined to have a
caloulate D below 0.043, Thus, the simulated distribution ls
consistent with the one derived when compared at the 0.05 probability

lovel,

It is worth noting that the maximum deviations occurred at the

center of the distribution and not at the tails.

1.8 Validation of Distribution for Diagnostic Tables

1.8.1  Introduction

Once the distribution for independent diagnostics was
developed and validated, the next step was to determine if the
distribution could be used in evaluating a table of diagnostics that
are correlated. Searle (1971b) has shown that the correlation of two

¢

bilinear forms is equal to
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Cov(Z'1A3Zy, Z'3AgZ,) = tr(A1yCegAgCyy *+ A1CayAsCsy)s
in which E(Z;) = K(Z,) = E(Z)) = E(Z) = 0,
where C,, = Cov(Z,, Z)), if u v v and
- Var(Z, 2,), if u = v,

Also define Z' = [Z', Z,', Zy', Z,'], 80 that Z~ N(0,V),inwhich

To determine how well ths derived distribution fits correlated
diagnostics, an experiment will be simulated at least 200 times and the
calculated diagnostics will be compared with the theoretical
distribution, For simplicity, I will consider a 3-way factorial

experiment with factor | random and factors 2 and 3 fixed. In this
simulation, 4,, the covariances of the form

Cim= l/(al-l)¥(7ijlk1.-Y.jlkl.)(Yij,k,.-?.j,k’.) = 1/(ay=1) Z'Ay3Z,,
in which ,|1 v j. and k; # k; will be the diagnostics used. Also define

C, - l/(al"l);(?ij;ka"Y'Jaka')(ﬂj4k4"Y'j4k4') - l/(al"l) Z3’A“Z‘.

For this experiment if we let




card j = (j, i) Ny i)
card k = w (ky, k) N (ky, k), and
card k = % (s ks (i %)) N (U ks Uy KON
then the covariance of ary two of the diagnostics for 4, is
cov (CyCq) = 26 if card j = card k = 0,
0 + 6,0, if card j= 1, card k = 0,
6, + 6,60, if card j= 0, card k = 1,
6, + 6, 0,9, if card j = card k = card jk = I,
89g + 0 0,y if card J w card k = |, card jk = 0,
01’ » 019899 if card j = |, card k = 2, card jk = |,
6, + 636,95 if card j w 2, card k w card Kk = I,
Also, the var (C,) = 6, + #,4".

Other experimental designs are entirely analogous, If a
nonfactorial inodel is assumed with only one non-nested random
factor, a sample covariance of the form C is still appropriate

although, depending on the nesting, one of the conditions, j1 % j;.

k; % k;' might be relaxed. The variance-covariance matrix V




still has the form assumed even though the variance and covariance may

be different functions of the varianca components,

1,8.2 Simulation of a Three-Factor Factorial Experiment

The linear mode! used in this simulation was

Yijkt = M + Ai + ABIj + ACik + ABCijk + «ijkt).
Here, M represents the grand mean and all fixed effects, and the

remaining terms are independent distributed normal with mean zero and
variance given by the associated variance component. The structure of

the covariance matrix for this design as defined in Hocking (198S5) is

Va AI(AO + Al) + An (A’ + An) Mu (Aa + A”) + t\’a (A'a + Aus). (1.5)
Where A; = (1/8%) G, @ G, .G, ® J,J, /', 8y = T &y,

G w1, = 1/aJ Jw If 1 4 TorJyJ, ifieT,

and A are the eigenvalues of V.

For this model, the variance for Z, associated with the
terms ccmprising the bilinear form has variance Var(Zy) = ¢, +

P13 + 3 * Pps Its covariance is cov(2,Z) = 4,

Two cases of this design were considered, For the first case
a; = 3, ag = 3 and ay = 2. In the second case, a; = 3, a, = 3,
and ay = 4. In the first case, 500 a, X ay x gy independent sample

from a standard normal distribution were generated and in the second
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case, 200 a, x ay x a, were generated. Both used Box-Muller.

Then, a sample of size a; x a, x a, was sequentially selected

and multiplied by VY2 where V*/3 is the same as formula

1.5 except that the eigenvalues are replaced by its square root,

For cuse one, 6 diagnostics were generated per iteration and
in the second case 36 diagnostics were generated giving 3,000
diagnostics for cass one and 7,200 diagnostics for case two. The
valud of the variance componentr was varied to obtain values of p
between -0.4 and 0.8. Due to the positive definiteness of the
variance covariance matrix V, -0.4 was the smallest value one could
expect from this design. The results for both cases are shown in
Table 1.1, For case one, the maximum difference for the simulation
and theoretical distribution ranged between 0,037 and 0,11, However,
for the critical probabilities of .01, .03, and .1, the estimated
critical values were small and conservative. The P(C s C,,,)
was always larger than what the simulation showed. The difference in
the agreement between the theorastical and simulation increased as one
increased in probability from 0.01 to 0.10. The maximum difference in
the two distributions occurred in the center of the distribution. For
the high critical values in case one and all critical values in case
two, the simulation and theoretical distribution agreed. The maximum
deviation between the theoretical and simulation ranged between .009
and .017 for case two. As in case one, the sstimated critical values

ware conservative,
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TABLE 1.}
Calculated Kolmogorov-Smirnov One Sample Statistic,
D, and Probability Differences at Critical Values for
Simulated and Theoreticnl Distribution of Variance
Component Diagnostics tor Various Values of p
when Variances ars Equal

‘3 - 3 “’ - 2
Differsnce at Critical Probabilities
a
p D .01 .08 .10 90 .95

043 0.094 0007 003 0.0% 0027 0021
<021 0110 0008 0040 0071 0016 0016
-0.00 007 0009 003 006 0011 000
0.04 0081 0007 0038 0062 0002 0007
015 0096 0009 003 007 0009 0004
025 0061 000 0038 005 0000 0,006
041 0064 0009 0036 0055  0.007 0,004
061 0072 0000 0033 005 0006 000
082 0037 0009 0029 002 0002 0009
Bg=3 ay=d
-0.43 0017 0001 000 0002 0007 0003
021 0012 0000 000 0000 0009 000!
-0.09 0013 000 000 0002 0008 0,002

004 0015 0002 0001 0004 0008 0.003

---------

0.002
0.001
0,001
0.002




Based on these findings, one can use the table of diagnostics
to identify abnormally large or small covariances in the table. This
diagnostic method will allow researchers the tool to investigate
sources of negative variance component estimates, identify outliers
and reveal model deficiencies,

Having developed the distribution of the diagnostics for
bilinear form when the sampile is from a set of independent
observations distributed N4(4, V), the next step is to develop the
distribution for the diagnostics (covariance) in which the assumption

of independent paired observations does not hold, The development of

this distribution and its validation is presented below,

2.1 Distribution Theory for the Variance Component Diagnostic
for Non-Independent Paired Observations

The final phase in developing the distribution theory for the
variance components was to consider the case where the sample

pairs (Zy, Zy)i(j = I, 2, ..\y 8y); are from a bivariate normal

distribution with variance-covariance structure

v al + bJJ el + dJ)
cl + dIJ! al + bJJ’

The small letters represent linear combinations of the variance

components us specified by the linear model, I is an identity matrix,
and J is a column of ones, This circumstance arises when dealing

with a linear model of more than one random main effect and then only in regard
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to certain variance components associated with the intaraction.

The Representation Theorem presented in Green (1987) allows the
diagnostics for designs of all sizes to be estimated in an
unbiased and efficient manner, regardless of the number of random
factors, or type of nesting, This theorem states that complex
diagnostics oan be written as a linear combination of simpler sample
covariances, [Each sample covariance Is based on the levels of a
single factor. Thus, the only bilinear forms required are of the
type Z,'AZ,, in which Z; and Z, are vectors of responses that vary the
levels of only one factor, and A=I-]J'/a;, in which a is the number
of levels of that one factor, Thus, in developing the distribution of

the diagnostics for paired samples which are not lndeper;dent, and
having already attained the distribution for the independent case, the

distribution of the diagnostics for any design with at least one

random factor will be completed.
2.2 H T rmati
The first step in developing this distribution was to

determine a transformation that could change the variance covariance

structure so that the transformed paired observations would be

independent and have the variance-covariance structure

v_[aI ¢l

cl al




Using all but the first row of the Helmert matrix as the matrix of the

transformation, it will be shown that the bilinear form

ZfAZ, - xl’x""i XI'A.X, + (‘3'1 )X1X3. 2.1

in which X = WZ, W is the Helmert matrix excluding the first
row,

A = 1 ~(J,)(J,,"), and Al (agr “Uayed)lages )

The Helmert matrix, H, is an orthonormal matrix. The first
row of H is J'/(3))"/% For r w2, ..., 8, the ™ row of H has

its first r~1 components equal to [r(r-l)]"/ 3. the r*h component

equal to ~(r-l)/[r(r-l)]" 3 and the remaining components equal to 0.

PROOF OF 2,]:
Let Z = (Yilk, Yi2k, ..., Tia,k),
2 = (Tilk’, RiK, ..., ¥ iak’),
Z, wN, (0, Cl1), and
Z, N, (0, C22), with

Cll = al + bl),

C22 = al + b))’ and

Cov(Zy,Z,) = Cl12 = ¢I + dJJ', in which a, b, ¢, and d are linear

functions of the variance components.




The Helmert matrix H is:

W= [a77%, Wy ] = [Wp, Wy) Also,
e e [ V][ B ]

W
weng- [z - L% ]
Then, X,'X,=Z,'"H'HZ, = Z,'Z,, since H is orthonormal, and

x;x, - ZI’WI’W1A + zl’w’.W2 Z, - a’zlz’ + Z.l_’wz'w,Z,.

Rearranging terms,
Xia'Xag = 2,'W,'W,2Z,

= X(X; - 8322,

= Z'AZ,,

a,-1) X . Thus, the bilinear form Z; is oqual to X.,'X,..
3 13422 1 13 A22

Now, the variance covariance structure of (X;;,X,q )is of the form
al ¢l
V= [ ol al }
since W,C,,W,' = al, W,Cp0W,' = al, und W,C;,W,' = ¢l. Having

estatlished that the bilinear form Z,'AZ, = X;;'AX,y + (a5-1) Xy3Xsa,

the next step was to determine the distribution of X;3'AX;, + (8,-1) XygFgs.




2.3 Distribution of Transformed Variables

First, one must realize that the bilinear form can be

written as a linear combination of central chi-squares and
that (ag~1) XXy, can be written as a linear combination of chi-squares,

Specifically, a property of the bilinear form is that

[ )6 g %-( 0% g2y ]

Xia'Ay,1Xyy = 8

in which a is the common variance of X;, and X,,, p is
the

correlation between X, and X,,, and x? g 1) is the central

chi-square with (a,-2 ) degrees of freedom,

PROOF:

Consider the product, X,X,, of deviations from the sample
mean inwhich X, and X, are singletons.

Let X' = (X,, X,). Then X = (X, X;)’ N, (0, V'), where

v 0 01090 ]
= I
0,00 0,3

| 0o 12 0 12 _
iIf A= [1/2 0 then XIX, - (xpxg ](1/2 0 ] ( xpxz] .
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The characteristic function is given by E (WX AX )

- j‘ f mexp [ItX'AX - 172X %y ) V' XXy ) * ] dX, dX,
' .1

which, since (1-2itAV)V*!)" = V(I-2tiAV)"}, may be written as

. . o1
ko [do0) (o) v o) ] o, ax,

-1
Let' W = [i1-2icav)V-t ],
By the identity 22/} w|¥%af...[ exp [-1/2X'W"X ] dX,...dX,, one obtains,

= VY3 (v(1-2itAV) Y ]1/2 )

w (|V-2itAV1))*Y/?

l-tip‘la‘, -tia’, 12

= 1/2 'tia’: l-tiﬂld"

1/3
- [I“Zitpldz + t’ [l"ﬁ »1,"” }

o [ (- ogtle ), , Haglen ) ]"”l

It follows that X'AX = Jp3- [(L)K, - (1-K, ] in which
K, and K, are independent xl’. If zl' - [Yn.Yn.....Yh’_ 1]

*
and  Zy = (Y3, 73304Y3s,. 1} then

7,"AZ," w XX, = X{1X,,




where X; w WZ,‘. W is the a4-2 rows of the Helmert matrix, and

Aw Tyam Juy 23's,-2.  Then, the characteristic function

of 2,"42," is

E [exp"z“ AzZ,* ) - E (oxp"1 %2 )

i} -zﬁ' [ (1.2 ][Hﬁtv;?(l-ﬂ) ) ]

Thus, the distribution of z,"Az,‘ is equivalent to the distribution

-1/2

of 1/20y0,[(1+9)K~(1-p) K,4], where K, and K, are independent chi-square
variables with a,~2 degrees of {reedom.

Second, dne must show that (a;-1) X; Ry is distributed as a linear
combination of central chi-squares. Specifically, if one defines

Y= (a,-n‘/’x, and ¥y = (a,-l)"’x,, then (¥, ¥;) » Ny (0,Z), where

z-[8 §)

. and the distribution of (a,-1) X, X, is also that of (asc)x,?-(a-c)x 2.

PROOF:

' X
k=Rt =gy [§ 9] [ ]
in which X = WZ, as previously defined. Then

X w N, (OV), and X ~ Ny (0,i/(ay-1)Z), where




Let ¥, = (8;-1)/?R,. Then ¥ m Ny(0,2) and¥,?* = (a5-1)K,R,.

Define & 2X2 Hel ix, Hm - 41 T
ne a elmert matrix (?)W [l I] en

W m (W Wy = (HY) ¢ [ (T489/(2Y2, (2,-9/(2Y? ], and

w~N,[o,[;*° ‘g] }

Thus (¥,+%,)/(2)? and (Y,-%,)/(2)¥? are independently normally
distributed with variance (a+c) and (a-¢), respectively. By Theorem

2.3 in Hocking (1984),
WW, o~ (are)xd),

W,'W, ~ (a-c)x?,, and

Wl'wl * W,'W: - YIY’ - (ﬂ"l)XIXa.




2.4 Distribution of Linear Combinations of Weighted Central
Chi-Squares

Define C = T, - T,, in which
T, 8, [ x"’_, + L ], and
CEIA L

8 = 3 [(149),
by = 1(1-9),
8, >0, by >0, a' = (arc)/a; > I, b’ = (a-c)/b, > 1, and

all the chi-squared variates are independent, The distribution of

T, can be represented by

Fr (%) = g & Flageaprall /300

inwhich nz qml and the q are weight constants depending on (a+c)/a, and a,.

The weight constant q, is equal to

~1/3 . r
q, -W-Mr rz0,

in which T (1/2) = &) ¥? and

Nr + 1/2) = loBcS-ﬂZZr-lel

PROOF:

Let ¢ 2 (t) denote the characteristic function of a central
n

chi-square with n degrees of freedom and WT‘(t) the characteristic
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function of T, Then, ¢4 (t) = (1-2it)™3, and,
*y

because the chi-squared variates are independent,

P af) = M"'(-,-l)(w""’x(t)'

The charasteristic funotion of a constant times a central chi-~

squared variate is given by Robbins, Herbert, and Pitman (1949) as

doa () = (1208 = [a%(1-2it)~(a%1)]™?
s n

= 230203 (-1 - 1/a(1-2it))
- 2™ ™A (11 - a2y (2.2)

By the binomial theorem, we have for a’ > 0,

" 1(1- 172921 - Ta, 2 for 12 <1~ 1/a", (2.9)
a' 2 |, q 2 0(j=0 I,..), and qu = |, Since

[1-2it]"! < 1, for all real t it follows from (4,3) that for a* 2 I,

“2a'"t) /2 o ey e )
(1-2ia’t)™ qu (1-2it) ™" );qjesx, M“(t).

Now, the characteristic function of T;/a, may be obtained

from (4.2) and the following defining identity for the constants qj’s.

where N = a,-1.

[ a2 0-ya92 1V ] < £, 02 5 0.

It follows that

Viya, (0) = (1-200) %D Co 2 Lt yava-2ip TV




- ij ( 1_2“)"("/3*”
=0 4 '

- Bt

which is the characteristic function of T,/a;,  Hence, the odf of
T,/8, by inversion is :ﬂl Fy.ai(t), where Fy,q(t) denotes

the cumulative distribution function of a central chi-square with N«+2i

degrees of freedom.

It follows on setting X = a,T that the cdf of T, is given by

gq. Fraa(x/8y),

Similarly, the cdf of T, is given by

Fp(W) = quFm,J(w/b,).
Since T, and T, are linear combinations of central chi-squared

variates, if f“; and fy, denote the densities of T, and T,

respectively, then the pdfs of T, and T, are given by
f’ﬁ - )_F(q‘/a,) fn.q(X/ay), and

fnr’ - ;(qubl) fN*’,l(w/bl)'
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PROCF:

LaqFaix/ay) = quIF"*"( X/8).

By the Beppo-Levy Theorem (Morrison, 1987), this

- I; quN'ﬂl( x/ 81) L] FTI/.( X/al).

Now, by Fubini's theorem (Wheeden and Zygmund, 1977),

F'a (Trqfnm(x/ a) ) = LOF wa(x/8y) = Zafy.a(x/ay).

2.5 Probability Density for Dlggggstlcu

In this section, the probability density function for T,-Ty = C,
which is the diagnostic when the sample pairs are not independent,

will be developed. Let f(x) and g(w) denote the pdfs of T, and T,
respectively, By convolution, the pdf of C = T~T, Is

h(t) = Zf(u-w) g(w) dw. (2.4)

In the previous section, we have shown that

f(x) = ;(Q,/al) fyeai(%/8y), x20, and (2.5)

g(w) = ;(qj/bl) fm,“(w/bl), w0, (2.6)




Since the series convergs uniformly, permitting interchange of

integration and summation, we may substitute (4.5) and (4.6) into
(4.4), and letting M = N, one obtains

h(t) = ;;qﬂj/(%"ﬁf: Frsai((HW)/8) fpgeg(W/D)) dW =

ag ¢(aMeala) - a)/sa-(l/hﬂ
>y oPIRMEE)/3, B8y BV (Maiy/2) TY(Ms2))/2) :
[ r o (AR BaD v Meal-0)/1 (1 M31-2)/3 ] dw. (2.7

It is worth noting that the integral given below,

1/T(M42)/2) J': a-((tx*«h;)/(ﬂt;b;))w wiM+ai-2)/3 (1 *w)(mm-a)/a dw,

is the confluent hypergeomeiric function and is identical with the
function U(a, b, x) discussed by Slater (1960). Having obtained the
distribution of the diagnostic, the problem of how to evaluate it
remained. This required the development of new recurrence relations

for the definite integral,

26 Distribution of Bilinear Form from Non-Independent
Bivatiate Noymal

It has baen shown above that Z,'AZ, = XX, + (8;-1) XX,
in which X, is the Helmert transformed data. If a, = 2, then Z,’AZ; =
XXy = (85-! ) XX, It hes also been shown that (a3-1) XX, w
(a«:)x’1 - (a-c)x},, where a is the variance of X and c is the covariance.
In the linear model context, the wariance (a) can

be broken down into 2 set of variance components comprising the
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covariance (5, as well as a set tha( is not contained in the
covariance (a), Therefore, defining the variance as a = a+f

and the covaraince as b = 5, the distribution of

Z)AZ, w X X, ™ 259‘2-*9- [ (l+ &%}"1 - (1-&%,) X, :l

Therefore, for N = 2, the distribution of the bilinear form is the
distribution of the covariance from independent paired observations

with twice the estimated variance,

2.7 Development of New Confluent Hypergeometric Recurrence Relations

211 Relation of Hypergeometric and Besssl Function

The calculation of the odf for the bilinear form when the
sample pairs are not independent required the development ot: new
recurrence relations for the confluent hypergeometric function. In
the riotation of Abramowitz and Stegun (1964), equations 13,1,10 and
13.2,5, U(a, b, x) is the confluent hypergeometric function of Kummer

and is glven by
Ula, b, x) = 1/Na) f:",-n-t--x( )P %! g,
Abramowitz and stﬂ'\‘n si\[e two !Pecial cases for which

Us, b, x) can be written in terms of the modified Bessel functions.

Using these relationships, initial values of the confluent

hypergeometric function for the cdf were obtained as follows,




For the case N is odd and i = j, iet r = (N - 1)/2 + i, and
xw22 Then2r+ 1l =mN+2imaN+i+jandr+1/2aN/2+|=

N/2 + j Using Abramowitz and Stegun equation 13,6,21,

U(N/2 + ), Nai+jx)wU(r+1/2 2r+1, 22)
- 513 g (22)7 K(2)

w Y3 /3 g (NInal)a Kn-1+21)/a(x/2)-

For the case N is even and | w j, let r = (N - 2)/2 + i, Then

r+lmN/2+iand 2r +2«N+2l «aN+i+ )} Using Abramowitz and
Stegun equation 13,6.24,
UNIN/2+j, N+i+jx)=m U(r+1,2r+2 22

-1Vt (22) @ ()

- w--l/l ex/ﬂ x-(N-h-?l)/’ K(N-1+Il)/3(x/2).

Note that this expression is identical to the one obtained for odd N.
Now by chocsing i = jmOand i = j = | with a =« N/2 and b = N one is
now able to calculate two values for the confluent hypergeometric
function for a given value of x. Specifically,
U (N/2, N, x} = U (a, b, x) and
UNN/2+1,N+2,x)m U(a+1 b+2 x).
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From these two starting values, a recurrence relation is needed to
obtain the remaining cases involved in calculating the probability

density function.

2,12 New Recurrence Relations for Confluent Hypergeometric Functions

The ewaluation of the pdf depended on being able to calculate
'U(n. b+, x)and U(a + 1, b + |, x), From Abramowitz and Stegun
equations 13.4,16, 13.4.18, and 13.4.19, replacing a with a + 1 and b
with b + 1 in 13.4,16 and 13.4,18, one obtains
(a+x) U(a, b, x) ~ xU(a, b+l, x) + a(b-a-1)Ula+l, b, x) w0, (2.7.1)
(b-a-1)U(a, b-1, X) + (1-b=-x)U(a, b, x) + xU(a, b+l, x) = 0, (2.7.2)
and (b-a)U(a, b, x) + Ula-1, b, x) - xU(a, bl, x) = 0, (2.7.3)
From these, it follows that

(b-a)b-a-1NHU@a+1 b x)+(b+x)U@ b+l x)

mx(a+x)U@+1, b+ 2 x) (2.7.4)

Now, 4.7.1 and 4.7.4 are two equations in the two unknowns
U(a + 1, b, x) and U(a, b + 1, x) and the known quantities U(a, b, X)

and U(a + 1, b + 2, x). The solutions by Cramer's rule are

UGasl, b, x) = 5L Uetl, 042, 2~ (o) Ve, b 1)

1 and

Ula, bHl, x) = @XUCR$L be2, X) & (b-a) U(a, b, x)

From these, using recurrence relation 13.4.16 in Abramowitz and

Stegun, with b replaced by b + I, U(a, b + 2, x) can be calculated in
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terms of U(a, h, x) and U(a, b + 1, x). The process can then be
continued to calculate U(a, b + 3, x) and all other values of b for

a specific a value, Similarly recurrence relation 13,4.17, with a
replaced by a+l, gives starting vaiues U(a + 1, b + 1, x) and

U(a + 1, b + 2, x), Other entries are obtained for the remaining a+l
elements by using the same recurrence relation, These rscurrence
relations were used iteratively to calculate the U functions for fixed

i and all j Thus, the cdf can be evaluated.

2.8 Turbo Program for Diagnostics from Non-Independant Observations

A computer program to calculate the cumulative distrlbutloq of
linear combinations of central chi-squared variables or squivalently,
the variance component diagnostics based on non-independent paired
observations are presented in Grynovicki and Green (1990). The
program is written in Turbo-Pascal and can be compiled and run on any
IBM compatible personal computer on which Turbo-Pascal is available.
The program utilizes Simipson’s integration method and calculates the

cdf using a tolerance of 0.0000006.

2.9 Validation of the Distribution for the Diagnostics

For p between -0.2 to 0.8 the theoretical distribution was

corapared to the diagnostics for f;5 from a three-way hierarchical
experiment with factor | random, 2 nested in | and 3 fixed. In this

situation the paired observations comprising the bilinear form

are not independent. The experiment was replicated 500 times for
each simulation. The diagnostic has the form
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F (Fik-Thk)(Tie-Tik )/ (3 -1).

Two cases were considered to determine how well the derived
distribution fits correlated diagnostics fromn the diagnostic table.
For case |, a, = 2, a; » 5 and ay = 3. For this case there were
three diagnostic® per experiment for 615, Case 2 differed from
case 1 in that a, was increased to 4. Both cases were generally

similar, The maximum difference for the theoretical distribution in

both cases ranged between 0.02 and 0.05, as shown in Table 2.1.

The difference between the theoretical and simulated numbers
for the critical values of 0.01, 0.05, 0.10, 0.90, 0.95, and 0.99

ranged between 0,002 and 0,039, with the maximum differs-.ce occuring

in the center of the distribution. The theoretical numbers were

conservative, as in the independent case,

2..0 Tabulated Cumulative Distribution for the Diagnostics

Cumulative percentile points of the covag'iance distribution
for p ranging between -0.7 to 0.9 in increments of 0.1, for sample

size N of between 3 to 10, 15, 20, 25, 30, 40, 50, and for variance
equal to one are contained in Grynovicki (1990). Due to the restriction of
positive definitness, this range of parameters for p and N should be
sufficient for most designs. Specifically, this table gives the value

of Cerit sSuch that p{C % Cerit) = a for a = 0,01, 0,05, 0.10, 0.90,
0.95, and 0.99. C is a bilinear form from a bivariate normal with

correlated paired observations.




TABLE 2.1
Calculated Kolmogorov-Smirnov One Saraple Statistic,
D, and Probability Differences at Critical Values for
Simulation and Theoretical Distribution of Variance
Component Diagnostics for Various Values of p
from Non-Independent Sample Pairs

8 =3
Difference at Critical Probabilities
a
[ D 0t 03 10 .90 95 99

EL L L L L T T R e L T T T L L L YN e Y T T Ty )

-5 0.030 0,007  0.021 0019 0019 0013 0003
-6 0.027 0.006 0.024  0.021 0.020 0.015  0.004
-7 0,050  0.002 0.029  0.027 0.028  0.021 0.003
-8 0.037  0.008 0013 0017 0015 0,009 0.001

-2 0.043  0.004 0.029  0.041 0.036 0.031 0.009
-1 0.045 0003 0027  0.03 0.030  0.034 0.007
-0 0.041 0.003 0033 0039 0029 0015 0006
-1 0.058  0.008 0.028 0038  0.042 0.028  0.005
-3 0.0 0005 0017  0.026 0.027  0.021 0.002
-4 0.047  0.002 0.020 0.023  0.033 0.024 0.003
-5 0.034 0.005  0.019 0.021 0.025 0.019  0.004
-6 0.028 0009 0023  0.02 0.019 0.012 0.003
-7 0.035  0.006 0.008  0.015 0.020  0.01l 0.005




2. 11 Iliustrated Example Using Eye Glass Manufacturing Experiment

As an illustration of the diagnostic technique in comparison
with its cumulative distributinn, the diagnostic from an experiment
previously examined by Green (1987) concerning eye glass menufacturing
will be examined. The data for this experiment are presented in Table
2,2, Factor 1 (run) is random at five levels, factor 2 (pot) is
random at two levels, and is nested in run, factor 3 (journey) is
fixed at five levels, and factor 4 (period) is fixed at three levels.

Factors |, 3, and 4 are crossed,

In the previous analysis, Green clearly determined that runs 2
and 5 were highly variable and that pot 2, in journeys 2, 4, and 5 was
clearly different from the rest of the data. The journey 2, between
pof difference is extreme, and the journey 4 and 5, pot 2 valves were

from a different type of glass than all other responses.

Two diagnostic tables will be re-evaluated and are given in
Tables 2.3 and 2.4, Table 2.3 represents the covariance

};(Yij.t. - Yi.t)(Tijt* - ¥i.t.9/(ag - 1) or, in Green's notation, C(i,2/tt)).

The variance covariance structure of (¥il.t., Ti2.t.,, Yil.t." Vi2.t) is

v al + bJ’J" ol + szJ" . hich
B 7% KO S 6 O it

B =Py * Fpap/S * Do * yanl/5:

bomd + /5t +ds/5
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TABLE 2.2

Glass Manufacture Data

Pot
1 2
Period Period

1 2 3 1 2 3

47 56 100 52 6l 88

55 89 93 49 62 7

1 3s 57 56 k7 60 72
78 67 Y k 47 o3 118

3 40 128 16 29 130

52 66 36 65 80 40

21 61 49 122 97 7

2 3 » 25 45 54 72
43 7 52 109 120 80

37 51 67 67 85 63

50 61 60 75 139 130

33 27 49 46 58 63

Run 3 24 39 24 15 KX] 9
18 18 43 22 16 19

28 42 28 27 19 22

24 34 43 46 66 24

24 49 42 40 117 105

4 21 21 51 30 28 kK’
21 69 43 36 64 53

76 48 42 39 60 78

3l 54 40 19 93 3

34 24 46 16 12 2

5 120. 122 120 kX] 58 107
109 119 120 25 63 90

69 49 60 34 43 ]
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TABLE 2,3

Diagnostics %:(Ym - Yi“'.)(Yu‘h. - ¥.40/(ag - 1)

1 2 3
! 50,00 4,00 -15.00
t 2 0.32 -1.20 iwl
3 4.50
t‘
1 2 3
! 1003, 50 658.60 470, 4¢C
t 2 432,20 308.70 i =2
3 220,50
L]
t
l 2 3
l 20,50 49.90 44,20
t 2 121.70 107.60 i =3
3 95.20
L
t
1 2 3
1 12.50 57.00 34.00
t 2 239.90 155.00 | =4
3 92.50
L]
t
l 2 3
l 1113.90 467.30 371,10
t 2 196.00 239.60 i=5
3 292.80
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TABLE 2.4

Diagnostics )l:(?‘*" - YT - ¥/ - D)

K'= 1 2
1 2%0.7 207.1
2 336.4
3
4
5

CK'm 1 2
1 362.1 -312.8
2 799.9
3
4
5
K= 1 2
1 1012.7 350.0
2 676.0
3
4
5

3

-247.2
-131.6
497,35

3

29.1
-488.5
631.2

3

-330.4
'488u 6
1032.3
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4 5
-61.8 -136.5
221.3 ~41.6
357.8 124.8 t =l
620.1 75.5
236.3
4 5
-371.0 -107.4
153.6 174,1
416.2 -41.3 t w2
1009.6 312,6
229.7
4 5
535 337.1
41.1 763.8
888.3 103.4 tw3
1286.9 968.3
1530.2




¢ = dyy + byey/5 and
d =9 + d4/5

Transt‘ormihg the ¥s with the Helmert matrix would result

in the transformed data having a variance covariance matrix of V with b

and d set to zero, The variance of the (ransformed data would be
By + Giap/5 + B135,/5 = 260, the covariance 4,y + ¢yse/S = 210, and
p is 0.8, based on the variance covariance e¢stimates given

in Green (1987)., For these diagnostics, since N is 2, double the
variances and use the 95% critical value with N = 2 and p » 0.8, The
95% confidence interval, [~98, 1705.6], is narrower than the 3¢

criteria used previously, Due to the large variance of cell means for
this table, no outliers were identified. This Is consistent with

the previous results. The high variability of tuns 2 and 5, and low

variability of run 1 is noticeable.

For Table 2.2, the variance of the cell means is ¢,, +
Bras/2 + B0 /2 + Dig0 /2 + b, + By + 8, + b, Table 2.4 represents

the covariance C(t,1/kk) w

E(Yi.kt 9.kt )(Fik't -7,k ) /(a,-1).

The variance-covariance structure of the cell means comprising this

bilinear form is

al ¢l
v-[cl al

in which a = ¢1 + B/ ¢ by + ¢m/2 * Dt Dia /2 ¥ By, *+ bi55,/2 and

Cwdy+d/2 4 b+ P/
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Using the estimates of the variance components found in Hocking (1989),

a = 701,17, and b = 92,43, Thus, the estimated correlation of the
independent paired <I:ells of different journey conditions for a given
period is 0.132, Using the distribution theory, one can obtain an
estimate of the 95% confidence interval [-442, 716]. Based on this
interval, one can see that period 2 journey 2 and 3 covariance is
small and period 3 journsy (3, 4), (2, 5) and (4, 5) covariances were
outside the 95% confidence interval specified above. The low
covariance in period 2 may be due to run 35, pot 2, period 3, journey
2, which was identified by Green (1987) as an outlier, The large
covariances are becawse of run |, journey 5 and run S, jurney 2,
period 2 and run §, journey 3, 4, It should be noted that in run §,

all' responses were from different furnaces than were used in the other

runs,

212 Conglusions

The distribution of the diagnostics for a bilinear form when
the sample pairs are independent and not independent has been
developed, tabulated, and validated. This theory has been extended to
the diagnostic tables for all random and mixed designs, For the
special caze when N = 2, it has been shown that the bilinear form for

non-independent sample pairs is equivalent to the independent case

with the variance doubled,
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Numerical Estimation and Properties of the Source Density Function

Charles E. Hall, Jr.
Research Directorate
Research, Engineering, and Development Center
U.S. Army Missile Command
Redstone Arsenal, AL 35898-5248

ABSTRACT

The Source Density Function is a four-parameter class of one-sided probability densig' functions.
In order to exploit the Source Density Function’s ﬂexiboilg? in shape, programs were developed to
estimate the parameters which maximize the log-likelihood function for a given data set.

INTRODUCTION

A brief review of the Source Density Function (SDF) is presented here a rigorous
development was done by Lehnigk{1]. The SDF, f(x,P), is generated from a delta function initial
condition solution of the generalized Feller equation. '

f(x,P) = B b~ x-(P-B+IV2 2(P+B-1N2 1o[2(x7/b)P12] exp[-b-P(xP+zB)] (1)

P=(zbpf)
20, b>0; p<l; (>0

Iq(:) is the modified Bessel function of the first kind, where qm -1 + (1-p)/p > -1. The vector P is
composed of the four parameters which are calculated so that the log-likelihood function is
maximized. A data set of observations is formed, which is composed of ordered pairs of the

observation variable xy, and the reladve frequency of that observation fy. The data set,
((xw,fv)lvm1,2,...,n with fo and £, 40}, is used with f(x,P) to form the log-likelihood function

o(P).
- n
o)=Y _ £ In( fxy,P)) @)
va=] :
It should be noted that as z-»0 both equations (1) and (2) approach the Hyper-Gamma density and

log-likelihood functions for A=Q [2). This will be refered to as the Hyper-Gamma limit of the SDF.
A transformation of the parameters is useful in simplifying the equations.
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cuzp2 , 3

For a maximum of the log-likelihood function, the requirement exists that all of the
derivatives of ¢(P) must equal zero. These equations place a further restriction on ¢, and it allows

the elimination of the parameter b from the equations.

bB = (B(P) - 02) / (1+q) (4)
n

B(B) =y __ fvexp(Bpy) (8)
)|

Py = In(xv) (6)

For b>0, it is required that B(B) - 62> 0, thus0 < & <4‘E'(T®. Equation (4) allows the elimination
of b from (2), thus ¢(P) is a three-parameter equation.

n
O(@B) = 1n B+ 4 IGW/(B(B)-0%)) + (4B - C - W BEHG2+)__ fyln(Spui(y)) (D)

B(p)-0? v=l
n ’
C=3 _ fvpv o (8)
vm|
Sp-1(r) = (/-1 .1(r) -}f__ (r/2)%/ kI T(k-+) (9)
ke
ty = 240 (B(B)-02) ! exp(Bpv/2) (10)
Bwleq ‘ (11)

Equations (4-11) form the starting point for the numerical estimation of the source density function
parameters o, f3, and |,



Initial attemps at parameter estimation of the SDF were based on the simultaneous solution
of the derivative equations of (7) set equal to zero. These equations had the following form.

n
0m-g+y__ fy (Sqw))! d Sy(rv) exp(Bpvi2) (12)
V] dry

n n
0= BBr-oD(1+BC) - kB Y fupvexp(Bpv) -Gy fupy dSgmy) exp(Bpy)  (13)
val val Sq@v)  dry

n .
0 = BC +In( 1 (B(B) - 09)}) +z: £y dSq(r) (14)
val Sq(ry) dq

A three dimensional application of the Newton-Raphson method was used. The functions on the
right side of the equal sign of equations (12-14) were used to form a vector, F(o,B,1) and a 3x3
derivative matrix of F(-) was numnerically calculated. This matrix was inverted and premultiplied
the negative of F(:) to yield a change vector for the three parameters, This method failed to produce
useful results due to the complexity of the ¢(.) function which typically had differences between the
o-derivative and f-derivative functions that typically spanned 10 or more orders of magnitude, The
derivative based approach was abandoned in favor of direct optimization methods.

Direct optimization of various log-likelihood functions by Powell's Method have been
successful [2,3,4,5], so this technique was applied to equation (7). Initial runs, with the starting
point close to the actual pararneters that were used to generate the data sets, were successful. But as
the starting point was moved further away from the solution, Powell’s algorithm ran into
difficulties due to its inability to deal with the B-¢ boundary generated by B(B)-02>0, (and the
flatness of ¢(-) ).

Powell's method is an unconstrained minimization algorithin. To change a maximum into a
minimum, the function is multiplied by -1. In this paper all equatons will be presented as they
were derived, and it is understood that the log-likelihood function is multiplied by -1 in the
computer programs. The next alteration required is to change Powell’s algorithm into a constrained
minimization, For the Log-Normal, generalized Gumbel, and the Hyper-Gamma distributions all
of the constraints were implemented in the calculaton of the log-likelihood function. If in the
function subroutine, it was detected that a parameter had gone outside the allowable region, then
the function would force the offending parameter into the allowed domain. This proved satisfuctory



since for these distributions, all of the constraints and the direction vectors for Powell's algorithm
were parallel to the coordinate axis system, but for the SDF this was not the case on the -0
boundary. A modification to the Powell algorithm was made in the minimum bracketing
subroutine, MNBRK. If the function detected a parameter which wes not in the allowable region a
flag was set, this flag was a signal to NMBRK that a constraint had been crossed. MNBRK would
then bisect the interval between the last good point and the desired point which had crossed the
boundry, and then try this new point. This procedure is repeated until the test point was in the
allowable region. This improved the region of convergence, but it still remained too limited.

To further modify Powell’s algorithm to get a better convergence criterion, it was necessary
to examine the sttucture of the log-likelihood function for the source density function. Figures 1
and 2 show cuts of the log-likelihood function as it varies with o (B and i fixed) and 1 (o and B
fixed) with the two fixed parameters set at the solution values. The scales on these plots are to
demonstrate the flatess of the function. These indicate that the ¢(+) function is a well-behaved
parabolic type function, and this continues even when the fixed parameters are set at non-solution
values, (of course with its extremum value decreased). Unfortunately, this is not the case when
&(+) is made a function of B, with 4 and & set at the solution values, (shown in Figure 3). During
the investigation it was seen that the left-hand peak of Figure 3 was the extremum, while the right-
hand was a false extremum. If the )L or ¢ parameter varied off of the solution value, the two peaks
moved towards each other and the left-hand peak was absorbed into the right-hand peak. This
demonstrates the existence of a ridge that connects the two maximums of Figure 3 together. This
ridge must be followed by Powell’s algorithm to locate the maxirnum. Figure 4 shows a typical
ridge in ¢-B-u space.

o ]

e

0 100 200 O 0 2 H

Figure 1. ¢(0), B and K constant. Figure 2. o(1), o and P constant.
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al S

46 47 48 B
Figure 3. ¢(B), © and 1 constant. Figure 4. Powel!’s trajectory in o-B-y space.

At first inspection it appears that this ridge was exactly what Powell was developed for, but
there are problems with traveling along this ridge. The first difficulty is that the relative change in
traveling along this ridge is approximately 1 part in 105 to 106, and it takes numerous iterations
following the ridge. When the relative change along the ridge is divided by the number of iterations
required for that journey, this average relative change is usually less than the termination criteria for
Powell's method. Thus, Powell terminates the optimization on a false maximum. Two means were
employed to alleviate this problem. First, the entire Powell subroutine package was rewritten to
perform all calculations in double precision. The evaluation of the log-likelihood function was
always performed in double precision to improve accuracy. With Powell’s subroutines being in
double precision, the termination criteria was improved, which helped to increase the range of
convergence. To further increase the convergence arca an amplifier function, equation (15), was
applied to the log-likelihood function for a second pass after the termination criteria was satisfied
on the first pass by the Powell subroutine package.

y=cll(el0@0%).1) (15)

¢* was the final value of ¢ from the first pass of Powell’s algorithm. The second pass of Powell
was used to maximize the y function. The amplifier function increases the siope of the function,
while elimi.: ting the large dc-offset. Frum earlier work with this amplifier, it was observed that
the termination criteria was effectively changed from 1 part in 6x108 (Powell in single precision, ¢
and 'y calculated in double precision) to 1 part in 1010, The actual amount of increase in the
effective termination criteria on ¢ is dependent on the difference in ¢ and ¢*, a small difference
yielded a better termination criteria (1 part in 10!!) while a large difference lessened the termination
criteria (1 part in 10%). Unfortnately, these modifications did not fully solve the problem, but they
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did help. Occasionally, the function was so flat on the ridge that even with the amplifier function,
Powell's termination criteria was satisfied. It appears that increasing the gain of the amplifier
would be of assistance, but Powell’s trajectory could be close to a boundary thus causing a large
change which would result in an overflow. Kestarting the amplifier with a new ¢* did help to
extend the range of convergence; thus Powell's algorithm was running with three passes, one plain
and two with the amplifier.

Even with this, the convergence range did not equal the allowable space. In some regions,
the Powell algorithm would “lock” on to a false maximum. At some of these false maximums, a
plot of ¢ as a function of one parameter ©, [, or & would show a maximum, but a ridge did led
away from this point in a direction oblique to the coordinate axis. During initialization, the Powell
subroutine was given a set of direction vectors, which spanned the space, and Powell’s method
searched for successive extremum along these direction vectors. The direction vectors were
changed, allowing an escape from the original false maximum but it would usually fall prey to
another. Similarly, Powell’s algorithm at times needed to track along a curved ridge or boundary,
but this would trigger a similar false maximum. To get past the false maximum problem, a steepest
descent subroutine package was written, This method was successful in finding the ridge, but it
failed once on the ridge, due to the flamess.

A variable transformation was then tried. Changing to A did again help extend Powell’s

range,
er=B(p) - 02 (16)

but this did not fully solve the problems.
Figure 5 is the computer output from four runs. The A, and W values are the initial values.
The A, B, 1, b and &, z are the final Powell estimates. All four runs did converge.

CONCLUSIONS

Application of Powell's method in three passes does produce accurate estimates of the
parameters of the Source Density Function. The major drawback is the requirement of a starting
point that lies in the convergence zone of the global maximum. In previous programs which
utilized the maximum log-likelihood principle with distribution such as, Log-Normal, generalized
Gumbel, and Hyper-Gamma, the moment estimates became the starting point for Powell’s method.
The moment estimates for the Source Density Function require simultaneous solution of four
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SOURCE DENBITY FUNCTION CALCULATIONS

Data files is \SDFDATA\SYNEX18.DAT

Lambda = . B00M00E+0Q1

Beta - . J00AVVE+001

Mu - .300020E+0Q 1

T o 48 S0 oE i 3 40 A bt L1 £ 00 48 4 AR A A0 6 0 2 A 2 U 0 A 20020 3 A A 0 4R 8
THE POWELL ESTIMATES FOR THE BOURCE DENBITY FUNCTION
Lambda = 120232E+002

HBeta ol .462324E+001
Mu - .207676E+001
b - »118221E+Q02
Sigma = .343231E+QQ3
z - . 124994E+002

Lambda = .E00000E+001
Beta - . J00N20E+2D1

Mu = .300Q20E+2@1
WAL LU LSS LS Ll I I R PR T R A A R R L L L Ll e L

THE POWELL EBTIMATES FOR THE SOURCE OENSITY FUNCTION

Lambda = . 120232E+222
Beta - .A62324E+00"
Mu - .207876E+201
b - JA18221E+002
Sigma = «343231E+0@3
z - ,124904E+002

Lambda = .000Q00E+0020

Beta = . 300000E+2@1

Mu - . 300000E+0@1 .
WA RL R LRI T LI L L AT S R LR A T LR LS R L L L B L

THE POWELL ESTIMATES FOR THE SOURCE OENSITY FUNCTION
Lambda = . 120229E+0@0@2

Beta - .482313E+001
Mu = .207679E+201
b - .118019E+Q02
Sigma = ,342193E+0Q3
2 - .124995E+Q02

Lambda = .800000E+QQ1
Beta = .S00000E+QQ1

Mu = . 300000E+Q@1
A AR AR LR AP AP0 3 SR 30 A 40 41 A AR U AR AR S0 040 0 T AP0 304 1 L AR S A

THE POWELL ESTIMATES FOR THE SOURCE OENBITY FUNCTION

Lambda =~ . 12024 1E+202
Beta - .482381E+201
Mu - . 207866E+001
b - . 11B8227E+002
Sigma = .343338E+QQ3
z - .124992E+002

Figure 5. Four sample runs.
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nonlinear equations, and this has proved to be more difficult than the maximum log-likelihood
estimate. -
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THE HUNTER PROBLEM IN A RANDOM FIELD OF OBSCURING ELEMENTS

Shelemyahu Zacks
State University of New York at Binghamton
and
M. Yadin

Technion-Israc] Institute of Technology

ABSTRACT

A hunter attempts to detect and kill targets within a fleld of obscuring elements, which
arc randomly dispersed (trees in a forest). The targets move along paths in the field, which
are partially obscured by the random elements, When a target enters a visible segment of
a path it takes tq [seconds] to detect it, and t; [seconds] to attempt destroying it. If such
a trial is not successful, other independent trials can be performed as long as the target iy
visible. The number of shooting trials that can be uttempted depends on the number and
lengths of the visible portions of the path. Lower nnd upper bounds for the probability
of destroying a target are determined by using the methods of random visibility measures
previously developed by the authors.

Key Words: Potsson Shadowing process, Bernoulls Trials,
Visibility Probabilities, 7-reduced measure of
Visibility, Detection Probability, Hitting
Prohability.
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0. Introduction

A hunter is trying to detect and hit a target in a forest, Supposc that a target is moving
along a path in the forest and the hunter isglocuvted among the trees at some distance from
the path. The path is only partially visible to the hunter: the invisible (shadowed ) portion
of the path is obscured by the trees which are dispersed randomly between the hunter and
the path. A target can be detected by the hunter if at least a certain part of it is visible.
After detection of u target, the hunter starts shooting, The target coutinues to move along
the path in the same pace. During each shooting trial the target crosses a length of 7
of the path. Thus the number of shooting trials in each visible segment depends on the
length of the segment. The shooting trials stop either when the target is hit or when it
enters an invisible portion of the path, When the target enters unother visible segment, it
has to be detected agnin., For simplicity we assume that the shooting trials are Bernoulli,
with probability of failure ¢, 0 < ¢ < 1.

The problem of target hunting can be treated as a two or three dimensional shadow-
ing problem, Two dimensional random shadowing problems were previously studied by
. Chernoff and Daly [1]. Likhterov and Gurin (2], Yadin and Zacks (3,4]. The methodology
developed in the present paper is also applicable to three dimensional versions of the above

roblem, For example, if a hunter tries to shoot down a helivopter whose flying course
1s partially obscured by crowns of trees. The three dimensionul shadowing problem was
previously studied by Yadin and Zacks (5).

In the present study we develop approximations for (a) the probability of detection:
(b) the probability distribution of the maximnal number of shooting trials N: and (¢) the
probability of survival of the target. We also provide numerical exnmples to illustrate the
goodness of these approximations. .

1. The Mode ures
Suppose that the hunter

the target, € is assuimned to be a smooth star shaped curve, detined by o piece-wise
differentiable function »(s),s;, € s < sy, representing the distance from 0 to C in

Visibility a ailure Probabilitics
is located at the origin, 0. and let C' denote the path of

orientation s. The polar coordinates of a point P on €' are (r(s),). The end-points of
~y
Cuare P and P . The length of C is

~y ~ay

sy .
L=/ [(s)ds (1.1)
al,

where

d .
(3) = [r*(s) + (=r(o)]'/?
The trees in the forest are presented by random disks dispersed in a region between 0 and

C. Each random disk is characterized by coordinates (p,6,y). where (p, 8) arc the polar
coordinates of its center and y is its diameter. The coordinates (p,6,y) belong to aset §
in R? satisfying conditions which assure that 0 is not covered and C' is not intersected by

random disks. Let B be the Borel o-field on the sample space S, and let N{B} designate
the number of disks whose coordinates 'belong to a set B of B. We assumne that, for each
B:B, N{B} is a random varinble having a Poisson distribution with mean

v{B} = /\/‘//H(dp,d())dC"(yW.()). (1.2)
n
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where G(y|p,6) is the conditional CDF of y, given (p,6), and H(dp,db) is a o-finite
measure of (p,#). Such a random field of disks is called a Pojsson random field.
A point P on C' is said to be yisible if the line segment OF is not intersected by any

random disk. A point which is not visible is in a shadow., 'I‘A'h;amea.sure of total visibility
on C is defined as o
V= / I(s)i(s)ds | (1.3)
s

where I(s) = 1 if P is visible, and I(s) = 0 otherwise. Notice that V is a random

\ » ~, v . [URNTY
variable representing the total length of the visible portion of C'. V' is u suin of & random
number, M, of visible segments of C' having random length Xy, Xa,.....Xas: ie

M
V=) X . (1.4)

yxx )
A target is detected only if there exists at least one visible segment of length greater

than the minimal path length 7, required for identifying the target. In order to de-
velop a formula for the probability of detecting a target, we introduce the notion of

r-reduced visibility measure, V(7), which is the total length of visible scgments, each

one reduced by 7 units, i.e,,

M
Vir)=)Y (Xi-7)4 (1.5)

im1
where a4 = max (a,0). The probability that a target is not detected is
pe(ra) = Pr{V(rs) = 0). (1.6)
On the other hand, the probability that C is completely visible is
p=Pr{V(r)=L-r1}, forall0<r <L (1.7)
Indeed, when C is completely visible, M =1 and X; = L. Let N denote the number

of sheoting trials, after detecting a target. If a single shooting trial requires a setment of
length 7 to be completely visible, then

M
N=Y" [(Xi—re)4/7], (1.8)
=]
where [a] is the maximal integer not exceeding a. Notice that
1 M 1 M
;‘Z (Xi-re—-T)s SN ;‘Z (Xi=1)s (1.9)
=l f=1 )
Hence, according to (1.5) and (1.9),
Vir)/r <N < V(re)/T (1.10)

179



where 7y =10 + 7.
If the probability of failure in each shooting trial is ¢, and the shooting trials are inde-
pendent (Bernoulli), the number of shooting trials required until the first success. J, is
distributed geometrically. Accordingly, the probability of failure (not hitting the target) is
Q = E{¢"}. Thus. according to (1.10). lower and upper bounds for Q are, respectively,
Q. and @,, where

Qi=E{¢"™/"} i=0,1 (1.11)

Notice that @; is the value of the MGF of V(7;) at the point 1 = (log ¢)/7.

2. The Moments and Momenut Generating Function of V(7). _
For the sake of determining the moments of V(7) we introduce the following definition
of this measure,

SU.r
V\r)=/ I.(s)l(s)ds (2.1)

L,r
where I.(s) = 1 if a segment of C of length 7, centered at (r(s),s) is completely visible,
and I,(s) = 0 otherwise. sy r and sy, are direction coordinates of points within C, of
distance 7/2 along C from s; and sy respectively. More formally, let

®
o
—

oL

Lo = [ " iy)ay. %

Then, sy, = L7(7/2) and sy» = L"YL ~ 7/2).
The n-th moments of V'(7) is thus

ma(7) = E{( / T L(s)(s)ds)"}

; ; (2.3)
= n!/ .../E{HIf(si)}Hl(s;)cis;.
An,r i=1 i=1
The set A, » is the simplex
Apr={(s1,-..,80); SLr= <81 < ... < 8p- < Sp5r) - (2.4)

n
Furthermore, E {HI +(si)} is the probability that the union of n segments of C, each one
i=1
of length 7, centered at n points having direction coordinates s; < ... < s,, is completely
visible. This probability is designated by pn(s1,...,5n;7). Thus the n-th moment of V(7)

18

n

77,.(7')=n!/1 .../pn(sl,...,.s,.;r)HI(s,-)d.:c.-. (2.5)

1=}

The method for determining pa(si,...,sn:;7) and p1,(7) is based on a general methodology
developed by Yadin and Zacks [3,4] for the special case of 7 = 0 the modifications required
for 7 > 0, are given in a Technical Report [6].
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3. An Approximation to the CDF of V(r)

The cumulative distribution function (CDF) of V(r) is a mixture of a two-point distribu-
tion concentrated on {0,L ~ 7} and a distribution concentrated on the interval (0, L — 7).
For the purpose of presenting the approximation discussed below, we consider a normalized
measure of visibility W(r) = V(r)/{L ~ r), which is concentrated on [0,1). The CDF of
W(r) can be represented as

0 Jifw<O
Fr(w) = po(r)+ (1 = po(7) = p1)F *r (w) ,0Sw<1 (3.1)
1 , 1w

If, for example, G(y|p, 8) is absolutely continuous then F}(w) is an absolutely continuous
CDF on (0,1). Let un(r) denote the n-th moment of W(r), Obviously, na(r) = (L -
) up(r)yn=1,2,....

Furthermore, for n =1,2,...

1
Un(r) = pr + (1 = po(r) = p1) /0 WdF? (w), (3.2)

Applying the Dominated Convergence Theorem one immediately proves that . lixrt,° pn(t) =

m forallr 2 0.

Explicit expressions for po(r) and Fj(w) are not available. We apply here a beta
approximation to F*(w) and provide a numerical approximation to po(r). This type of
mixed-beta approximation was applied also in [3,4,5]. As will be shown in Section 6, in
some special cases, the first ten moments of W(r) and of the mixed-beta approximation are
very close. This indicates that in those cases one has a highly effective approximation. In
cases where the moments are not in agreement better approximation should be attempted.
The approximating beta-mixture CDF is given by the formula

0 , fw<0
Ff(w) = ﬁﬂ(‘r)'*'(l —ﬁo(r)"’Pl)Iw(anﬂr) 0w <l (3.3)
1 yifl<w

where Iy(a,f),0 £ w £ 1,0 < a,f < oo, denotes the incomplete beta function ratio.
The probability p; of complete visibility of the segment (S, S,) of C is determined by
the shadowing model, as shown later. The values of po(7),a, and B, are determined by

equating the formulae of the first three moments of F,(w) to those of W(r), as shown in

(3]

4. Bounds for the CDF of N_and fo
Inequality (1.10) yields lower and upper bounds for the CDF of N. Indeed, from (1.10),
™ ™
Fr.(L_To)SPr(NSH}SFH(L—T,') (4.1)

The CDF's in (4.1) can be approximated by the mixed-beta CDF (3.3). According to
(1.11), the lower and upper bounds, for the fuilure probability @, are the vaiue of the




MGF of W(7)i =0,1, at the point t = 1(L — =) log ¢. Let G.(t) indicate the MGF of
W (r). This function can be expressed in terms of the moments of W(r) us

oC
Gr(t) =1+ p(e = 1)+ Y BT oo <t oo, (4.2)

nm}

Since pn(r) | 0 us n grows the infinite series in S4.2) converges faster than e!, and
therefore 2 small number of terms will often provide & good approximation. Another
method of approximating G.(t) is by employing the MGF of the mixed-beta distribution
(3.3) with p(r),a, and B,

5. Numeric :

In%ﬁ!e present section we provide an example which demonstrates numerically the results
of the present paper. We consider the case of an arc €' and annular strip §, which was
discussed in Section 6.1. The parameters of this case arc:

0y = -m/2,8, = —7/3 sy =7/3,8, =n/2yr =1, w=6,um= 4 ) =5

In addition, the diameters are uniformly distributed over the interval (.1, .5),

In Table 5.1 we present the first 10 moments of W(r), for 7 = 0(.1).4. The correspond-
ing moments of the mixed-beta distribution (3.3) are also given for comparison.
As shown in Table 5.1, the first ten moments obtained from the mixed-beta CDF, F.(w),
differ from those of the correct distribution only at the 4th decimal place. This reveals an
excellent approximation to the CDF of W gt) by Fe(w), in the case under cousideration,
In Table 8.2 we provide the parameters of the mixed-betu distributions associated with

Table 5.1,

The values of fio(7) in Table 5.2, provide the mixed-heta approximations to the probabil-
ities pe(7e) of not detecting a target. This is obviously an increasing function of 7,. Thus,
in the present example, if 7o = .1, fo(7) = .012 while if 7, = 4, po(7e) = .043. py = 27 is
the probability of complete visibility along the path. Since the moments of the mixed-beta
distributions F,(w) fitted so well those of W(r), we repluce Fy, (7=8=) with Fr,(72%),i =

0,1. In Table 5.3 we present ﬁ‘,,(ﬁ_ﬂ;‘-) for 7y = 0(.1).4, 7 =.1.

The values of @; = E exp{t;W(ri)}} where ¢, = in ':_L i
also given in Table 5.3

As seen in Table 5.3, if r = .1 and 7, = .1 the lower bound of Q is .0967 and the upper
bound for @ is .1273. If however, 7, =0 then .0704 < Q@ < .0967.

The bounds for the CDF of N are read from Tuble 5.3 in a similar manner. For example,
if 7o = 0,7 =.1 47, =.1 then for n = 6,.0435 < P{N < 6} £.0785. If, 7, = .1 then
=147 =.2 and .0785 < P{N < 6} < .1283. Thus, from the first two columns of
Table 5.3 we obtain that, when 7o = 0, the expected number of trinls, E{N}, is between
13.7 and 15.1.

log (¢) with q = .8, are

1€2




{ T r

20 ] a2 ] 3 4 5 8 9 | 10

|
T !

T m
0.0 | .738 | .600 | .517| .462| .425| .398 | .378| .363! .351, .342
~738 { €00 .517 .463| .425| .398 | .378| .363( .351, .342

al)

} . ]
0.1 .704<r.5u1 L4791 .427] .3930 369 | .351 | .338| .329/

321

.704 | .561 | .479] .427 .393} 369 | 351 .338] .329( .32

0.2 .671 | .526 | .447! .398] .368) .347 ] .3321 .321] .313| .307
671 | .526 | .447| .399] .369 .347 | .332 .321| .3131 .307

0.3 ] .641( .497 | .421| .377| .349( .3301 .318| .308( .302{ .297
<641 | .497 | .421| .377( .349| .331( .318 .309| .302| .297

|

!
0.4 .614 | .471| .399( .359| .334] .318| .307| .299 .294i . 289
614 | .471 | .399( .359| .334( .318| .307| .300 .294i .290

TABLE 5.1 Moments of Wi(t) (upp=2r line) and of FT(w) (lower
line) for 7 = 0(.1).4 andn = 1, ..., 10.

~ ! .
T N Py (€) 'pl | O r | cr
{
0 . 2393 .0064 .27 3.3905 1.8838
1 . 2559 L0lle 27 3,0675 2.0334

.2 <2747 .0194 .27 2,8000 2.1640
.3 2917 .0298 .27 2.6076 2.3093
.4 .3069 .0431 .27 2.4814 2.4808

TABLE 5.2. The Parameters of the Mixed-Beta Digtributicn
Fr(w) for T = 0(.1).4. {0 §ggotes the standard

deviations.)
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. ! i -
A4 00 0.1 0.2 | 0.3 0.4
0 | 0.0064 | o0.01l9 | 0.0194 | 0.0298 | 0.0431
1 | 0.0065 | 0.0122 | 0.0204 | 0.0318 | 0.0466
: | 0.0075 | 0.0147 | 0.0255 | 0.0411 | 0.0613
3 | 0.0104 | 0.0211 | 0.0375 | 0.0804 | 0.0894
4 | 0.0166 | 0.0332 | 0.0577 | 0.0906 | 0.1307
5 | 0.0273 | 0.0520 | 0.0870 | 0.1314 | 0.1836
6 | 0.0435 | 0.0785 | 0.1253 | 0.1819 | 0.2458
7 | 0.0662 | 0.1131 | 0.1723 | 0.2405 | 0.3145
8 | 0.0960 | 0.1557 | 0.2269 | 0.3052 | 0.3865
9 | 0.1333 | 0.2059 | 0.2879 | 0.3736 | 0.4585
10 | 0.1782 | ©0.2628 | 0.3532 | 0.4430 | 0.5272
11 | 0.2303 | 0.3252 | 0.4209 | 0.5106 | 0.5894
12 | 0.2890 | 0.3914 | 0.488¢ | 0.5735 | 0.6423
13 | 0.353)1 | 0.4592 | 0.5529 | 0.6288 | 0.6836 |
14 | 0.4208 | o0.5261 | 0.6115 | 0.6738 | 0.7117 |
15 | 0.4%02 | 0.5891 | 0.6613 | 0.7063 | 0.7265
16 | 0.5582 | 0.6448 | 0.6992 | 0.7249 | 1.0000
17 | 0.6213 | 0.6896 | 0.7226 | 1.0000 | 1.0000
18 | 0.8750 | 0.7183 | 1.0000 | 1.0000 | 1.0000
19 | 0.7139 | 1l.0000 | L1.0000 | 1.0000 | 1.0000
20 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000
Q | 0.0704 | 0.0967 | 0.1273 | 0.l621 | 0.2000
|
TABLE 5.3. The CDF ;’i ER) o wien T e 1, TR0,

L-su-sL: and the corresponding MGF Q-
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COMBAT MODELING

One afternoon of the 35th Conference on the Design of Experiments in Army
Research, Development and Testing was devoted to a Special Session in the
important area of combat modeling. First on the agenda was a paper by Donald
H. McCoy entitled “Statistical Issues Related to Combat Modeling," and is
published in these proceedings in the format of a slide presentation. The
author advised the editor of these proceedings that most of the slides are
self-explanatory; some are not. He figures that anyone who really wants to
follow up would contact him. The title of the second paper planned for this
session was "The Ballistic Research Laboratory Firepower Control Simulation
from Inception to Validation," and is published in these proceedings.
Unfortunately, its author, Ann E.M. Brodeen, was unable to attend the
conference. Her place on the agenda was filled by a paper entitled "A
Nonparametric Approach to the Validation of Stochastic Simulation Models" by
William E. Baker and Malcolm S. Taylor. The last paper of the Special Session
was presented by Eugene Dutoit., The attendees were given a-thirty-page handout
that he prepared for the convenience of the analyst who has to examine the
results of force-on-force combat modeling. He provided these proceédings an

abstract of this handout.

Preceding Page Blank
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TRADOC ANALYSIS COMMAND
(TRAC)

MISSION

The mission of TRAC is to conduct studies and analysis to
support doctrine, combat and training developments in the
Concepnt Based Requirementis System; lead the TRADOC team
conducting major studies and analysis; and develop and
maintain analytic tools, scenarios and simulations for
analysis and training of Airland Battle operations worldwide

GOALS
% LEADERSHIP

A Command whose leaders at all levels possess the highest

standards of ethics and professionaliam, committed to

excellence In mission accomplishment and the well-being of
subordinates

% CENTRALIZED COMMAND OF ANALYSIS

A Command which provides analytic service based on a well
developed and managed study program with corporate

development of taskers and plans and fully coordinated
execution

% INTEGRATED ANALYSIS

A Command whose analytic process ensures a balanced
representation and linkage of the Army’s functional areas
and ech:lons in a worldwide joint/combined operations and
environments which are simulated and analyzed

% DIRECTED RESEARCH

A Command which continually explores emerging technologles

and innovative approaches and harness them to improve the
quality and timeliness of its analytic products

% QUALITY PRODUCTS

A Command which is committed to excellance in Analysis and
dellvers timely, high quality analysis and simulations to
meet the nveeds of Army leaders and trainers

* PROFESSIONAL WORKFORCE

A Command composed of military and civilians who possess the
highest ethical and professional atandards, and the desire,
skills and ability to produce the finest analyses for the army
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ATTRITION COEFFICIENTS

INTERACTION OF FOUR PROCESSES
e LINE OF SIGHT
e TARGET ACQUISITION
e TARGET SELECTION
e FIRING AND KILLING

A=h « "'—1"'"_x PF
EFK

WHERE

h= PROBABILITY THAT A TARGET BEING FIRED ON OR
ACQUIRED WILL BE DESTROYED BY THAT FIRER
BEFORE LINE OF SIGHT IS LOST OR THE TARGET
IS DESTROYED BY ANOTHER FIRER.

EFK » EXPECTED TIME THAT A FIRER SPENDS FIRING
AT A TARGET WHICH HE HAS ACQUIRED AND
SELECTED WHEN THE ENGAGEMENT ENDS IN A
KILL BY THE FIRER (CONDITIONAL KILL RATE).

PF = UNCONDITIONAL PROBABILITY OF FIRING

TRADOC ANALYSIS COMM AN D S . %
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ATTRITION COEFFICIENT
ASSUMPTIONS

EXPONENTIAL DISTRIBUTION OF
 TIME TO ACQUIRE
* DURATIONS IN VISIBLE OR INVISIBLE STATES
e TIME TO KILL

EFFECTS OF AN AGGREGATE GROUP CAN BE
REPRESENTED BY A NUMBER OF
"AVERAGE" ELEMENTS

TRADOC ANALYSIS COMMAND s %
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BASIC PARAMETERS

e NUMBER OF FIRERS

e WEAPON CHARACTERISTICS
- RANGE
- FIELD OF REGARD

e NUMBER OF TARGETS IN RANGE

e PROBABILITY OF LINE OF SIGHT

e ACQUISITION RATE

e RATE OF MOVING OUT OF LINE OF SIGHT

'« RATE THAT OTHER WEAPONS KILL TARGETS
e SELECTION PRIORITIES

e KILL RATE

* FIRING RATE

TRADOC ANALYSIS COMMAND
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CURRENT RESEARCH EFFORTS

o Al BASED CORBAN REPLACEMENT
(TRAC-FLVN/TRAC-LA)

o ATTRITION MODELING RESEARCH
(ANCKER/QAFARIAN)

e ARMOR/ANTIARMOR WEAPONS MIX ANALYSIS

e GENERALIZED VALUE SYSTEM
(Dr. PARRY)

o EXPERT SYSTEM FOR POST PROCESSING
(TRAC-FLVN)

* JANUS/NTC COMPARISON
(TRAC-MTRY)

e MODEL-TEST-MODEL W/CASTFOREM
(TRAC-WSMR)

e TARGET SHADOWING
(Dr. ZACKS)

e VIC EXPERT SYSTEM TO PRODUCE
DECISION TABLES

e COMPETITIVE TRADEOFF MODELING
(Dr. ROBINSON)

e HIERARCHICAL ANALYTICAL NETWORK SYSTEMS
(Dr. CHARNES)

TRADOC ANALYS8IS COMMAND
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THE BALLISTIC RESEARCH LABORATORY FIREPOWER CONTROL
SIMULATION FROM INCEPTION TO VALIDATION

Amn E M. Brodeen

Director
U.S. Army Ballistic Research Laboratory
ATTN: SLCBR-SE-W
Aberdeen Proving Ground, MD 21005-5066
(301) 278-4109, AV 298-4109

Abstract

The Ballistic Research Laboratory Firepower Control Simulation
(BRLFCS) is designed, in part, to support the on-going investigation of
new ways of ottacking the problem of data distribution on the
Lattlefield, Ideally, prior to being utilized, the model should be vali-
dated, le., tested whether or not it reasonably approximates the process
of distributing tactical information across the battlefield. However,
model validation generally assumes the availability of empirical data in
order that some comparison may be made between the output gen-
erated by the model and real-world data. Unfortunately, a very limited
empirical date base exists for the validation process. This paper pro-
vides an overview of BRLFCS related issues, i.e., characteristics, sup-
ported applications, planned modifications. More importantly, a discus-
sion of an approach proposed by Iman, Helton, and Campbell for vali-
dating large-scale computer models by replacing empirical data with
model output will be presented in the context of the BRLFCS validation
process [1,2).




I. Introduction

The BRLFCS is a large-scale information distribution model developed by the Weapon
Systems Technology Branch (WSTB), System Engineering and Concepts Analysis Division
(SECAD), BRL, Although a limited verification has been on-going as the model has evolved,
the question has been continually raised as to whether the model could be statistically vali-
dated.

Currently, limited data exists for only a few tactical elements, e.g., the fire support team
headquarters (FIST HQ), the Field Artillery Battalion Fire Direction Center (FA Bn FDC),
of the several included in the BRLFCS. This data was collected over the past several years
from statistically designed firepower control experiments conducted in both research facility
and field environments [3,4,5,6,7]. From the scope of the previous tests, it became evident
that significant monetary and human resources must be expended to collect firepower control
data for even a single tactical node, However, the WSTB is constructing its own Firepower
Control Research Facility (FCRF) which should ease past resource burdens tremendously.

Statistical validation of the BRLFCS is beset by not only the lack of experimental data,
but costly simulation runs and large numbers of input variables with differing characteristics,
e.3., qualitative and quantitative, discrete and continuous, ranges covering several orders of
magnitude, These are all familiar problems facing anyone wishing to validate a large-scale
simulation model, Although there has been innovative research done in this area, it, too,
assumes the availability of at least some empirical data [8]. Fortunately, there is a technique
which holds promise for validating large-scale models encumbered with the types of
aforementioned problems. This generalized technique was proposed by Iman, Helton, and
Campbell and is outlined in a two-part journal article [1,2].

This paper broadly outlines the techniques being proposed to validate the BRLFCS and
the preliminary steps which have been completed at the time of the writing of this paper to
place the validation process in motion, With this in mind, there are no results to report at this
time, However, the author would like to solicit comments and critiques of the proposed solu-
tion to this problem, particularly from those who may have actually used the methodology.

I1, The Ballistic Research Laboratory Firepower Control Simulation
a. Characteristics

The BRLFCS will be used to evaluate brigade (bde) area firepower control concepts for
maneuver (mvr) and fire support elements. It i8 not imended for the model to be all-
encompassing, but rather to provide an overview of the distribution of tactical information
across the battlefield.

Some of the relevant features of the BRLFCS are presented in Figure 1. The version
represented is a maneuver battalion (mvr bn) supported by field artillery units and is the ver-
sion which will initially be validated. There also exists a brigade version which differs from the
battalion version in scale only, Of particular importance with regard to the validation process
is the fact the BRLFCS is a stochastic model, where stochastic model is hereby defined as
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one in which, for each set of input values, a set of output values occurs with a certain proba-
bility. With such 2 model, any number of the input variables may be deterministic, so long as
at least one is stochastic, Although a deterministic simulation was initially considered, in
crder to meet anticipated needs, a certain degree of randomness was built into the model,
with the capability to suppress it if desired. Therefore, certain features of the BRLFCS were
also designed to be stochastic. For instance, provision was built in to select the time a mission
is initiated. These times may be either assigned explicitly, or the mission initiation rate, ie,,
number of missions per hour, can be given and the times assigned based on a random number
string.

o Land Bused

¢ Any mix of Blue Forces, mvr bde and below,
including relevant fire support

e  Supports any conflict for which data transmission
requirements can be specified

¢  Resolution down to individual radios/data distribution units
operates with “260 in game; provision for 500

¢ Writtenin'C

e Input requirements: networks; units; transmission lengths
and times; transmitter characteristics and locations; scenario data

o Outputs: unit and network loadings; queues; message and mission
timelines

e Full scale runs made on a CRAY
Reduced scale runs made on a Gould 9600

o Transmissions may be either TACFIRE or packet format
e Accomodates both TACFIRE and packet switching networks

e Processes performed in parallel

Figure 1. BRLFCS Features
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b. Concept

Although the simulation was planned so that it will be able to support future
Army/DARPA Command & Control Project (ADDCP) activities, its principle function will
be to demonstrate and evaluate the potential of new concepts of dynamic fire support
management applications at the fighting level (bde and below), in particular the BRL Infor-
mation Distribution System (IDS) fact-based technique [9].* In support of the IDS, the
BRLFCS will be used to predict those links and/or procedures for data dissemination that
result in excessive burdens on specific tactical nodes or networks, and to determine which
aspects of the information flow have deleterious effects on mission duration time or asset util-
ization.

Overall, utilization of the computer simulation model should help narrow the focus of
the on-going tactical computer science research, preventing it from pursuing "blind alleys",

¢. Planned Modifications

Since the BRLFCS is designed to address specific issues while continuing to support the
tactical computer science research effort, the simulation can be modified as needed. One
such issue which may necessitate investigation, and which directly impacts the build up of
queues in the network, is the manner in which high-priority missions entering a queue are
handled. Normally this type of mission should be in.mediately advanced to the top of the
queue for processing; however, the BRLFCS presently handles all missions on a first-in-first-
out (FIFO) basis. While provision has already been built into the model to accomodate prior-
ity missions, the computer code has not yet been changed to address this issue,

Two other issues which the simulation does not presently address are unit attrition and
multi-path information routings, ie., a more advanced scheme for routing packet message
types (only) around the battlefield. These two issues are actually related in that, supposing a
unit is operating at reduced efficiency, it may become desirable to reduce, or supress alto-
gether, the amount of message traffic passing through that node. Under the existing routing
algorithm pattern in the BRLFCS, this is impossible. As can be seen from Figure 2, the net-
works are now connected by single gateways (located at nodes 49 - 52, 54, 56, 78, and 80),
thus forcing a transmitted packet message to follow a single path regardless of the number of
times the message must be sent, Such a scheme may allow queues of unacceptable length to
build up quickly.

nr——w ' ]
The basic concept of the IDS is to design a system capable of representing, storing, disseminating, and displaying facts in a tactical

distributed computer environment.




I11. Validation of the BRLFCS
a. Verification and "Face Validation"

During the course of its evolution, the BRLFCS has been undergoing almost continual
verification: in other words, the correctness of the model is being established. This phase
may be loosely described as "debugging" the program, e.g., determining the reasonableness of
values of certain model input variables and the correctness of the compnter coding used. The
'C’ program language allowed the BRLFCS to be easily structured into modules, or subpro-
grams, By running the model using data employed in its construction, and observing the out-
put from these modules, both the developer as well as “experts" knowledgeable about infor-
mation distribution system models feel comfortable the model is behaving acceptably. When
"experts" are insured a simulation is realistically representing the assumptions upon which it is
based, this is often refered to as a model having "high-face validity".

Performing such a verification is allowing for a more efficient, simpler simulation
design, which will eventually account for savings in computer time. Also, by previewing the
output of the simulation modules, an experimenter is protected against anomolies which
might occur in the responses when the model is used.

b. Anticipated Validation Approach(es)

It was originally envisioned that verification and "face validation" of the BRLFCS, as a
complete system, would be the best that even recent advancements could offer, particularly in
light of the difficulty in obtaining experimental data. Winter, et al, states, "The quality of the
component models and the excellent knowledge of the random process along with a sys-
tematic verification must be a substitute for validation [10]."

However, a literature search unveiled a sensitivity approach to the validation of large-
scale computer models, which to the author’s knowledge, has not been utilized at the BRL.
The approach is fully outlined in a two-part paper by Iman, Helton, and Campbell. Their
approach focuses on the construction of a response surface as a replacement for the model.
Underlying this approach is the substitution of model output for exverimental data (due to
the lack thereof). The remainder of this paper will highlight some of the features and stra-
tegies of this methodology which are being implemented into the validation of the BRLFCS.

Also planned is a statistical validation of the tactical nodes for which experimental data
already exists (and which is independent of any caic. vtilized in the development of the simu-
lation). Referring ‘o Figure 2, the tactical eiements which will be validated are the FIST HQ,
nodes 69 - 72; Field Artiilery Battalion Commander (FA Bn Cdr), node 77; FA Battety Fire
Direction Center (FA Btry FDC) positioned at the FA BTRY HQ, node 80. Although some
similar type elements may be currently co-located with other types, or may even change their
physical location in future applications, they are otherwise generic in nature, e.g., the func-
tions of FIST node 69 are ¢quivalent to FIST node 70.

The approach for validating these nodes will entail a nonparametric procedure recently
developed by Baker and Taylor for a stochastic computer simnlation model [8].
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IV, Strategies and Features
. Preliminary Discussions of Model Input and Output Variabies

Although numerous types of descriptive data will be collected during each simulation
run, three model outputs have been identified as the measures that will be used in validating
the BRLFCS. The three outputs are: 1) net usage, i.e., the percent of time a specific net is
occupied by message transmissions; 2) unit utilization, Le., the percent of time a specific unit
is occupied with handling message traffic; and 3) mission duration,

The formats of the required BRLFCS inputs vary, Some require the simple assignment
of a numnericul value for program identification purposes only, e.g., packet radios assigned a
code of 6, while others are strictly deteriministic or stochastic in nature. Still others may
currently be designated as either deterministic or stochastic as mentioned in Section ILa.

Most of the present effort focuses on discussions being held between the model
developer and the analyst. As a result of these discussions, several issues were identied as
imipacting the selection of an appropriate sensitivity technique. First, the developer has pro-
vided the analyst with an assessment of each input variable’s anticipated impact on the model
output based on his "expert" opinion, Second, for analysis purposes, it is being assumed that
nonlinesr relationships with the model outputs may exist. This does make the construction of
an appropriate response surface a bit more tedious, but doable, However, it is also being
assumed that there are no 2-way or above interactions among the input variables, Third,
since the three output measures constitute a time dependent function of model input, each
input variable must be examined to determine whether its importance changes significantly
over time,

b. Input Vector and Significant Input Variables Selection Techniques

Obviously, in order to fit a response surface, model cutput must be obtained for various
values of the input variables. The choice of which samipling scheme to use to select values for
the input vectors presented a problem. Random sampling is not uppropriate and, as for the
other possibilities, e.g., stratified sampling, double sampling, it nearly boiled down to a "grab
bag" selection process. The sampling technique must taks into consideration the possibility
that or.e or more of the input variables might change in importance over time, as well as
insure that ail portions of each variable's sample space will be represented by input values,
even when that distribution of values covers several orders of magnitude.

The Latin Hypercube Sampling (LHS) techn.que claims such advantages over other,
more common, sampling schemes [1,2,12]. Another feature of this technique which makes it
even more advaatageous to the BRLFCS wvalidation process, is that the probability distribu-
tions used with Li1S do not necessarily have to be the "true" distributions In fact, if preferred,
the range of values for the input variables may te used in place of probability distributions.
For the majority of the BRLFCS input variables, their ranges of values is the only information
available.
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¢. Input Variable Ranking and Respoise Surface Construction

One of the objectives of this sensitivity analysis will be io obtain a ranking of the poten-
tially important input variables, This result will be used to help drive factors selected for
future IDS testing. There are several regression techniques which may be used to select a
"best subset" of the predictor variables. For the BRLFCS validation, stepwise regression will
be utilized initially to construct a response surface based on a linear combination of the
independent (input) variables [13].

Following an initial fit, several things should te checked, e.g, is the fit adequate, con-
sistency of independent variable selection if similar dependent variables are present, are the
predictions reasonable, If the response surface is not providing a suitable representation for
model output, then additional work is needed. Earlier it was mentioned that there is the pcs-
sibility that the relationship between some, or all, of the BRLFCS input variables and the out-
puts is nonlinear. Iman, Helton, and Campbell suggest the use of rank regression as
developed by Iman and Conover [14}], Rank regression is a relatively simple concept. Data are
replaced with their corresponding ranks whereby usual regression procedures may be per-
formed on these ranks,

d. Other Statistical Considerations

Only a few of the ideas that must be considered for the validation of the BRLFCS, or for
that matter any sensiti-ity analysis, have been outlined using Iman, Helton, and Campbell as a
guideline. No mention was made with iegard to the acrual validation of the response surface,
the various diagnostic tools available for obtaining preliminary information for the construc-
tion of the surface, or data transformation, These issues are discussed in Ruferences [1,2].

V. Summary

The technique outlined by Iman, Heiton, and Campbell appears to be a viable approach
for validating the BRLFCS, Additionally, the use of the nonparametric technique developed
by Baker and Taylor for stochastic models seems zppropriate for performing a statistical vali-
dation of those tactical nodes for which experimental data exists.

A critique of these approaches, as well as suggested alternatives, are invited by the
author, '
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A NONPARAMETRIC APPROACH
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ABSTRACT

For three decades interest in simulation modeling and simuiation languages has been
expariding, almost keeping pace with the phenomenal rate of growth of computer technology.
Lagging somewbat behind has been attention to the validation of the resulting simulation
models; that is, the establishment of some level of confidence that the model does, in fact,
accurately mimic some real-world process. In the last fifteen years, research in validation
techniques has been substantially increased; and one general conclusion has been that
statistical tests are desirable in the validation process.

We have adapted a nonparametric statistical technique to validate a stochastic
simulation, and this procedure has subsequently been applied to a computer model currently
in use at the US Army Ballistic Research Laboratory, Monte-Carlo methods have provided
an indication of the power of this statistical test.

KEYWORDS: Hypothesis Testing, Ranking Procedures, Power of Test




I. INTRODUCTION

For three decades interest in simulation modeling and simulation languages has been
expanding, almost keeping pace with the phenomenal rate of growth of computer technology.
Lagging somewhat behind has been the concern for the validation of the resulting simulation
models; that is, the establishment of some level of confidence that the model does, in fact,
accurately mimic some real-world process. In the last fifteen years, research in validation
techniques has been substantially increased; and a consensus of general conclusions has
formed:

1. validation is problem dependent - there is no one general validation technique,
mainly because the output from a model may be independent or correlated,
univariate or multivariate, stationary or dynamic, and so forth; in fact, the model
itself may be deterministic or stochastic,

2. in general, absolute validity is nonexistent - once a particular technique has been
established, the model is usually validated only for a specific purpose and over a
specific range of values,

3. empirical data are necessary - in order to validate a model, some comparison of
output data with real-world data must be made; furthermore, these empirical
data must be independent of those used in construction of the model, and

4, statistical tests are desirable - of the many methods proposed for validating
simulation models, the use of statistical tests seems to be preferred, possibly
because of the ability to establish some level of confidence.

Nonparametric validation methods generally involve a procedure known as hypothesis
testing. The initial step is to state a null hypothesis, usually "the simulation model is valid."
Then a level of confidence is established, often 95%; and a particular test statistic is chosen.
Two different errors are present in hypothesis testing. The first is called a Type I error and
occurs when a true null hypothesis is rejected. If the level of confidence has been set at 95%,
then it follows that the probability of a Type I error is 5%. However, in simulation model
validation a Type Il error is the more important to control; this occurs when a false null
hypothesis is accepted. No level of confidence is pre-established to guard against accepting
an invalid model; but, for any particular statistical test, a measure of the protection against
this error is given by the power of the test, equal to the probability of rejecting the n
hypothesis when it is false, ,

Unfortunately, there is a tradeoff between the two error types; as the level of confidence
is increased (lower probability of a Type I error), the power of the test is decreased (higher
probability of a Type II error). This implies that one way to increase the power of a test is to
decrease the level of confidence in it. There are, however, more satisfactory ways; and they
will be mentioned in the summary of this paper. The important point to remember is that
when attempting to validate a simulation model using hypothesis testing, it is imperative that
the statistical test be a powerful one.
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II. LITERATURE REVIEW

As the electronic computer becarne a more powerful tool, computer simulation became
a more viable method by which the behavior of a given process could be characterized. As
early as the 1950’s, articles were being published about computer modeling of entire systems;
and soon after, specialized simulation languages were developed. The pioneers in this field
realized the need for some assurance that the simulation output would be consistent with the
empirical data that were available. However, prior to 1967 there was very liitle written that
provided any explicit procedures which might he applied to determine the soundness of a
computer model, In that year seversl papers concerning this problem were published, and
two of them became a foundation upon 'vhich most subsequent efforts have been constructed,

In 1967, Fishman and Kiviat* provided definitions which differentiated the notions of
verification and validatinn, terms which had previously been used interchangeably,
"Verification determines whether a model with a particular mathematical structure and data
base actually behaves as an experimenter assumes it does. Validation tests whether a
simulation model reasonably approximates a real system." Most individuals working in this
area today have subsctibed to these definitions, although papers continue to be published
wllich do not discriminate between the two ideas. Figure 1, taken from a paper by Winter, et
al.’, is a Venn diagram illustrating the relationship betwgen verification, validation, and other
concepts within the field of computer simulation, Stone” believed the word assessment "... is
preferable to validation which has a ring of excessive confidence abonit it." However, in this
paper we will continue to consider validation as defined by Van Horn,” who expanded on the
previous definition by giving it a somewhat statistical flavor. "Validation .., is the process of
building an acceptable level of confidence that an inference about a simulated process is a
correct or valid inference for the actual process."

! Flshman, G.8. and Kiviat, PJ, "Digital Computer Simuiation: Statistical Considerations,* Memorandum RM-$387-PR, The Rand
Corporstion, 1967.

2 Winter, EM., Wisemiller, D.P.,, and Ujihare, J.K., "Verification and Validation of Engineering Simulations with Minimal Data,’
Procsedings of the 1976 Summer Computer Simulation Confarence, 1976,

3 Stone, M., "Cross-Validating Choice and Assaasraent of Statistical Pradiction,” Joumal of the Royel Statistical Socisty, Series B-36, 1974,
4 Van Hom, R, "Validation,” The Design of Cumputsr Simulation Experiments, Duke University Press, 1969,
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The sccond influential paper to appear in 1967 was by Naylor and Finger.’ In it they
proposed a three-stage approach to validation of a computer simulation. This technique, or &
modified varsion of it, has been used by numerous authors. Law™ has augmented their
approach with specific suggestions for each of the three stages: '

1. develop high face.validity - insure that the simulation seems reasonable to those
people who are knowledgeable in the area,

2. test the simulation assumptions - examine the data used in building the
simulation and empirically test the assumptions drawn from those data, and

3.  compare simulation output data with empirical data - use tests, statistical if
possible, to determine a level of confidence in the simulation.

When attempting to validate existing models, the first two stages will often have already
been completed by the developer of the simulation leaving only the third stage, potentially the
mbost difficult.

. Naylor, T.H, and Finger, JM., “Varificaton of Computer Simulation Modals,* Managemnant Scisncs, Vol.14 No.2, 1967,

§ Law, AM,, Simulstion Modaling and Analysis, University of Wisconsin, 1979,
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Not everyone subscribes to the three-stage approach to validation, However, there does
seem to be a general agreement that the third stage, comparing simulation output data with
empirical data, is crucial. Sometimes obtaining empirical data in she region of applicability is
very difficult, especially in engineering simulations. Winter, et. al.” mention in that case, "The
quality of the component models and the excellent knowledge of the random process along
with qlsystematic verification must be & substitute for validation." However, Fishman and
Kiviat® are firm in their statement that " ... if no numerical data exist for an actual system, it is
not possible to establish the quant}tative congruence of a model with reality." In attempting
to perform this third stage, Wright' suggests that three questions be considered:

1.  how dn we intelligently compare simulation output data with empirical data,
2. how do we collect and exploit the empirical duta used in our tests, and

3. how do we transform the results of these tests into a confidence in the computer
simulation?

Finally, Baird, et. al. warn that the empirical data used for comparison with the simulation
output data must be independent of those used in building the computer model; otherwise,
we have only verification of the simulation,

Tytula" has divided the many methods used for the data comparisun into five general
categories:

1. judgemental comparison - this method seems to be the most widely used and
includes graphical aualysis and the comparison of common properties such as the
mean and variance; it is easy to use and quite practical, but the impact of errors
in judgement is difficult to assess,

2. hypothesis testing - this method includes goodness-of-fit tests, analysis-of-
varlance techniques, and nonparametri. ranking methods; since this will be the
category of interest in our report, the advantages and disadvantages will be
discussed in the succeeding section,

3. spectral analysis - since the output of many simulation models is in the forni of a
time series, this method is particularly useful; however, it is difficult to relate the
invalidity at a particular frequency to the overall simulation validity,

7 Wright, KD, "Vilidating Dynamic Modsls: An Eveluation of Tests of Predictiva Powsr,”
rocesding of the 1 ummer Computer Simulaiion Conferencs, 1972,

8 Baird, AM., Coldman, R.B., Bryan, W.C., Holt, W.C., and Beiross, F.M,, "Verification and */aiidation of RF-Environmental Models -

Mathodology Overview,’ Busing Asrospace Company, 1980,

9 Tywla, T.P., "A Method for Validating Missile Systam Simulation Models," Technical Report E-78-11, U.S. Army Misiile Rossarch and
Devslopmant Command, 1978,
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4. sensitivity analysis - this method can determine a range of parameter values and
assumptions over which the simulation is valid, but it is usually difficult to analyze
the effects of the characteristics drifting outside this range, and

S. indices of performance - this method is useful in ranking models; however, it is
impossible to pick a value for a given index which will always imply a valid
simulation.

Validation is a difficult process because, as Tytula’ points out, no single satisfactory
method exists. Most techniques are problem dependent; and, indeed, the output data of a
simulation may be lndeplsndent or correlated, univariate or multivariate, stationary or
dynamic, In fact, Garrett™ states that, "The critical dimension affecting the applicability of
various techniques is that of the deterninistic or stochastic nature of the output.’ Oﬁly a few
authors have attempted to provide a general validation technique - see Gilmour™ for an
example, Most have developed methods which apply to a select subset of simulation models;
and, even then, the simulation is often validated only for a particular purpose or over a
particular range of values. In that case, care must be taken not to apply the simulation model
outside the validated region,

III. VALIDATION PROCEDURES

In this paper we will be examining hypothesis testing as a method for validating
stochastic computer simulation models. This type of procedure allows some level of
confidence to be uttached to the results. When employing hypothesis testing, several
assumptions must usually be stated; but by using nonparametric ranking techniques we will
eliminate one major (and often unjustifiable) assumption - that the data arise from a normal
distribution,

Sargent'z notes that for hypothesis testing we generally assume a null hypothesis that the
simulation model is valid. Then by establishing a level of confidence for a particular
statistical test, we fix the probability of a Type I error in which we reject a valid model.
However, for simulation validation it is more important to minimize the probability of a Type
II error, that is, accepting an invalid model. ‘The magnitude of the Type II error can be
determined by the power function of the statistical test where the power is the probability of
rejecting a false null hypothesis, For a fixed sample size there is a tradeoff between the two
error types, so that we can increase the power at the expense of the confidence level,
Unfortunately, the power can not be computed againsi an alternative hypothesis as general
as, "The simulation model is invalid"; and therefore, it must be examined against an array of
different specific alternative hypotheses. Nevertheless, we continue to search for powerful

10 Garrett, M., “Sintistieal Validation of Simulation Moduls,” Proceedings of the 1974 Summer Computer Simulation Conference, 1974,

u Gilmour, P, "A Cenersl Validation Procedure for Computer Simulation Models,” The Austrailian Computer Jonmnal, Vol.S No.3,
1973,

1 Sargent, R.0., "Devulopiug Statstical and Cout-Risk Procedures for Validation of Simulation Models," U.S. Army Research Offics
Proposal Number 18201-M, 1980,




statistical tests with justifiable assumptions which will still provide acceptable levels of
confidence.

Let X = (x,, X,, ..y ;) be a vector of inputs to a simulation model, and let y be an output
resulting from X. Theny may take on many values is the case of a stochastic model, Let zbe
the corresponding value from the real-world process given the same input vector, In general,
y will not be equal to z since X contains only a finite number of input variables; ostensively,
the most relevant ones. The purpose of the simulation model is to mimic the real-world
process. Thus, in attempting to validate it, we compare each empirical value with the
corresponding model output generated under the same conditions; that is, the same values for
the vector X.

. Suppose there exist N pairs of data (yy,2) (Yp2Z) + + o (Y Zy) available for
comparison, where each palr corresponds to a different input vector a;xd where each y, is itself
be a vector of values from a stochastic model. Reynolds and Deaton™ note that because each
of the pairs was generated under different conditions, it would be incorrect to pool the data
and proceed with the ‘esting of our hypothesis, Rather, we must find a statistical procedure
which examines each pair individually and then allows for the combination of these results
into one overall test that provides reasonable power. With this as our goal, we propose to use
a nonparametric statistical procedures - a process which combines independent cases of the
Mann-Whitney test,

A stochastic model provides a set of outpyt values that, for each given set of input
values, occurs with a certain probability. Mihram™ states that this "... probability ... serves as
a measure of our human ignorance of the actual situation and its implications." Generally, the
behavior of the system is too complicated to include all of the appropriate inputs in the
computer model. Even if it were possible, the return in accuracy provided by such
thoroughness may be small. Refinement of a computer mode! usually leads to stochastic
modeling; and because of the abilities of today’s computers, the use of such modeling has
substantially increased.

Given M replications, output of the model becomes a set of values y’, yz, et yM for each
set of input values which can be compared with (in our case) a single corresponding empirical
value z, Recall that X is a vector of most, but not all, of the relevant input variables, Then z,
given the value of X, Is a random variable reflecting the random error due to the exclusion of
certain factors from X. Alsoy, of course, is a randoni variable since the simulation model is
stochastic. We would like to show that F(y|X), the conditional distribution function of y, is
equal to G(z|X), the conditional distribution function of z for all - o0 <y, z < oo and for all
X

3 Reynolds, M.R,, and Deaton, M.L., "Comparisons of Some Tests for Validation of Stockastic Simulaion Modals,"
Commun, Statist. - Simuls, Computa,, Vol.11 No.6, 1982,

u Mihram, G.A., Simulation: Statistiesl Foundations and Methodology, Acsdemic Prass, Inc,, 1972
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(;onsidwfing N iliffirent prut sets, the vai&able ggta cousist of N observations
01. Yp w Y 21), (y y Yp o yz ’ v ()'w }' 9 » JN zN) Of munimiate random
variables, where the Y ’s fohany given observation share a common distribution. Mihram'¢
suggests ranking y Yi» =n ¥ » 2, for each i; if the model is valid, we would expect the 2, to fall
somewhere in the middle of such a ranking, This is the initial step in a procedure known as
the Mann-Whitney test, a particular case in which one of the random variables, namely 2, has
a sample size of one. Since we are dealing with N observations, we need a method by which
we can combine indepeia ent cases of the Mann-Whitney test; such a method hﬁ been
proposed by Van Elteren™ and referenced in a very clear example by Reynoids, et.al.,

The Mann-Whitney test is a hypothesis test involving samples from two distributions that

gsts for gqu uality of the distributions. For each input set X a sample of M output sets

y, +Y is obtained from the computer simulation, and the empirical observation z
provldes another sample of size one. The following three assumptions are made:

1) both samples are random samples from their respective populations,

2) in addition to independence within each sample, there is mutual independence
between the two samples, and

3) the measurement scale is at least ordinal,

The third assumption means that for any two observations on the random variable we can
distinguish which is larger and which is smaller,

The null hypothesis is that F(y|X) = G(z|X) for a given input set X. When we combine
N of these tests, in the manner suggested by Van Elteren, we have the null hypothesis of
F(y|X) = G(z|X) for all -co <y,z < oo and for all X, whll‘ch we can interpret as,N;"'Ihe
simulation model is valid." Let R, be the rank of z, in the i'" observation (yi,yz, RN
thus, R, is an integer between 1 and M + 1. Then a test statistic T is defined as the sum of

the R/'s over all N observations; that is, T = 33 R, Very high or very low values of T will

i
cause re jﬁction of the null hypothesis, The theory behind the Mann-Whi lifney test is given in
Conover ', and the combination of such tests is explained by Van Elteren", '

A fourth assumption is usually made, that both samples consist of random variables
from continuous distributions. This is to assure that there will be no zeros and, more
importantly, no ties. However, for this test, a moderate number of ties is tolerable; and they
are handled by assigning each of the tied values the average of the ranks normally due them,

15 Van Elteren,P,, "On the Combination of Independent Two Sample Tests of Wilcoxon,"
Bulletin de 'Institute Intermational de Statistique, 37, 1960,

16 Reynolds, M.R,, Burkhart, H.E, and Daniels, R.F,, "Procedures for Statistical Validation of Stochastie Simulstion Models,”
Forest Sciency, Vol.27 No.2, 1981,

7 Conover, W.J., Practical Nonparamatric Statistics, John Wiley & Sons, Ine., 1971,
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As mentioned earlier, a misuse of hypothesis testing as a method of simulation
validation occurs when too little concern is shown for the power of the test. The power is the
probability of rejecting an invalid model, and we would like this probability to be as close to
one as possible. Unfortunately, the power can be calculated only for specific alternative
hypotheses. In order to generate power curves for this combination of Mann-Whitney tests, it
is convenient to make one additional, albeit restrictive, assumption; namely, the distribution
of the y's is the same for each vector of input values, and similarly for the distribution of the
2's. Although it would be preferable to avoid this assumption, it is necessary in order to test
against specific alternative hypotheses - in this case, a shift in the mean.

Figure 2 shows some power curves for this test when the underlying distributions are
normnal and the mean of the distribution of the 2’s varies from zero. Recall that a true null
hypothesis would indicate that the means of both F and G tend to be equal to zero . These
curves were generated using a Monte-Carlo procedure which incorporated 10,000
replications. Note the increase in power as the number of observations increases. Figures 3
5 display some power curves for other alternative hypotheses, each figure assuming a
different common distribution for F and G with a corresponding modification of the mean of
G. Notice when the abscissa is equal to zero (when the null hypothesis is true), the
probability of rejection is 0.05 - the value chosen for the probability of a Type I error. The
faster the curve approaches one, the more powerful the test against that particular alternative
hypothesis. Although very narrow in their scope, these results do provide us with an
indication of the overall power of the test against a shift in location and allow us to determine
the extent to which the probability of a Type II error might be reduced by an increase in
sample size. Reynolds and Deaton'> look at some test statistics similar to T designed to be
more powerful against other alternative hypotheses.

IV. EXAMPLE

The Vulnerability Analysis for Surface Targets (VAST) model is a computer simulation
currently in use at the Ballistic Research Laboratory to evaluate t{ise effect of kinetic energy
projectiles or shaped-charge threats against a single surface target.™ It incorporates damage
from both the primary penetrator and any associated spall fragments; but currently it is
unable to handle damage resulting from blast, heat, and certain synergistic effects such as
ricochets, Furthermore, there is a variety of opinions, estimates, and decisions, all based on
the experience of the vulnerability analysts but generally providing vague and imprecise data,
which subsequently serve as input to the simulation. Nevertheless, results demonstrate
reasonable face validity, so an attempt at statistical validation of the model seems feasible.

A target description is produced by a separate computer code using a combination of
geometric figures and, once generated, can be viewed from any orientation. After a viewing
angle has been established, a rectangular grid is superimposed over the target in the plane
orthogonal to that angle. From a (uniform) randomly-selected point within each grid cell, a

18 Hafer, T.F. and Haler, A.S, "Vulnerability Annlysis for Surface Targets (VAST): An Internal Point-Burst Vuinerability Model,"
ARBRL-TR-02154, U.S. Army Ballistic Research Laboratory, 1979,
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ray is traced through the target; and a list is constructed of all components encountered. If a
spali-producing component is encountered, spall rays are traced from that point of impact to
all critical components in the target. These rays represent spall fragments whose size, shape,
and velocity are chosen at random from specified distributions.

Along each individual ray, residual masses and velocities of the primary penetrator und
associated spall fragments are used to calculate the probability of incapacitation for each
critical component. These are then combined over all critical componetts and provide a loss
of function {LOF) for the particular cell, fur;her combined over all cells to provide a LOF for
the particular orientation, and finally combined over several orientations to pravide an overall
LOF for the targst.

Data were provided by vulnerability assessors who had estimated loss of function for a
particular surface target based on their inspection of actual damage from a particular round
of ammunition - in this case, the function evaluated was thie mobility function. When
attempting to compare model output with this empirical data, it was first necessary to
determine the exact point of impact on the surface target during the live-fire exercise. Then
the VAST model assumed that point of impact to be the origin of the ruy representing the
primary penetrator. Damage due to that ray and its associated spall rays were then combined
to provide a LOF value which could be comparzd with the empirical datum point. Therefore,
only one orientation was considered and, for that particular orientation, a ray originating at a
specific point within only one cell was examined. Encountering a spall-producing component
still required a random selection of spall characteristics; and because execution time was
reduced, the model was run using thirty replications -+ the output data appear in Table 1. This
output from the thirty two replications was compared with the empiricel data, using the
method proposed for stochastic simulations, ,

Table 2 contains the results. Recall that R is the rank of z, in the i observation
(yl ,y,, ,y, »z), and T is defined as the sum of the R} & Under the null hypothesis of a
valid model, z "has the same distribution as y‘,yl. +Y¥; » and therefore, R, is uniformly
distributed over the values 1,2, .., M + 1. Lehmann®® shows how to establish critical values
against which the test statistic can be evaluated. Modifying his results by incorporating the
number of tied observations, we can calculate the expectation of the test statistic,

Bm-imm+m, W

and the variance of the test statistic,
Varm-—"[NM(M+2)]-""—"‘“—[EE(d -dpl, 2
12 RM+1 0

where I is the number of observations, M is the number of replications of the model, and d
represents the number of tied values for the ' " tie in the i observation with n, different ties
in the ™ observation. Then T = = (T - E[T])/V Var [T] will have approximately a standard

9
1 Lehmann, E.I., Nonparametrics: Statistical Methods Based on Ranks, Holden-Day, Inc., 1975,
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TABLE 2, HYPOTHESIS T_Eﬁ’[‘ |
Rank within
Shot Number | Empirical Value | Model Values

43 734 16

44 145 11

45 1,000 16

46 1,000 16

47 100 8

48 900 27

49 930 31

50 1.000 16

51 145 1

52 1.000 16

53 668 27

54 1.000 16

55 1.000 31

56 905 31

57 S50 11

58 1.000 225

59 1.000 24.5

60 050 1

62 1.000 16.5

64 .100 13.5

65 1.000 16

66 668 6

67 953 75

68 1.000 k)|

69 1.000 16

70 1,000 24

7 1.000 4.5

72 1.000 30

73 1.000 16

74 905 30

75 668 15

76 1.000 16
Y Ranks = 584
Critical T-Values (a = 0.05) = 435 (lower), 589 (upper)
Critical T-Values (« = 0.10) = 447 (lower), 577 (upper)




normal distribution. For our example we have 32 observations, 30 replications, and 51
instances of tied values with varylng numbers of ties; in this case E[T] =512 and
Var [T] = 1521, We can calculate critical values by evaluating the equation T = 392 + 512,
where z is the a/2 percentile of the standard normal distribution. As shown at the bottom of
Table 2, there is insufficient evidence to reject the null hypothesis at an a~level of 0.05;
however, at an a-level of 0,10, the null hypothesis would be rejected.

Since the null hypothesis could not be rejected at an a-level of 0.05, we must be
concerned with the possibility of a Type II error; that is, accepting an invalid model. Figures
2-5 demonstrate the power of these tests against an alternative consisting of a shift in the
mean. Figure 3 shows that the power of this test is very good if F (the distribution of the
model output) and G (the distribution of the empirical data) are both uniform. However, as
seen in Figure 4, if F and G are both Cauchy, then the power of the test is rather poor.

Reynolds and Deaton™® have proposed other test statistics more powerful against
different alternatives; but for the loss of function data where empirical results that are close
to the value one tend to be assigned that value, a shift in the mean seems to be an appropriate
alternative hypothesis, Since the power against this particular alternative is fairly good
overall, our confidence in the hypothesis tests tends to increase, IHowever, we would like to
be able to make these tests and other tests still more powerful and, in the future, will be
exploring methods to accomplish this,

V. SUMMARY

When referring to computer simulation mnodels, a few authors continue to use the words
verification and validation interchangeably; however, most distinguish between the two terms.
Verification of a computer model assures that the simulation is behaving as the modeler
intends, while validation assures that the simulation is behaving as the real world does.
Verification is the process of debugging a computer program; validation is making it
consistent with reality.

Prior to 1967 very little was written concerning the validation of simulations; but much
has appeared since then, and there has been general agreement on several points - the most
important being that to validate a computer simulation model, mpirical observations are
necessary and statistical tests are desirable, All validation techniques can be placed into one
of five categories: judgemental comparisons, hypothesis testing, spectral analysis, sensitivity
analysis, and indices of performance.

Nonparametric ranking techniques are one class of statistical hypothesis tests. We have
advocated a combination of independent Mann-Whitney tests as a validation procedure for
stochastic simulation models. This is a statistical test which assesses empirical data to provide
a certain level of confidence in the computer model. The main disadvantage is the same as
that of all hypothesis testing techniques; namely, their concern for protecting against Type 1
errors, sometimes at the expense of Type II errors. A Type I error results in rejecting a valid
simulation model - unfortunate, but not as potentially dangerous as accepting an invalid
simulation model, which is known as a Type II error. For any particular test we can get an
indication of the probability of a Type II error by generating a series of curves that will allow
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us to examine the power of the test against various alternatives,

Power is defined as the probability of rejecting a false null hypothesis, and we would like
this value to be as close to one as possible. For our advocated test we have evaluated the
power for some specific alternative hypotheses by incorporating a Monte-Carlo procedure
into a computer program, which allowed us to perform thousands of replications. Each
replication represents a case in which the alternative hypothesis was true, and we determined
whether or not the test rejected the null hypothesis, Obviously, we can not compute power
against an alternative hypothesis as general as, "The simulation mode! is invalid." However,
in being more specific we are forced to examine an array of different alternative hypotheses;
and while a test may be powerful against a subset of these alternatives (such as a shift in the
mean of a distribution), it might be less so against others. The most we can hope for is
reasonable power against alternatives important to a particular investigation. The
combination of independent Mann-Whitney tests appears to have reasonable power against a
shift in the mean, but we would like to be able to increase it.

For any given alternative hypothesis there are several ways of increasing the power. One
such way can be seen in Figures 2-5 - increasing the number of observations. Another way is
to reduce the level of confidence in the test itself; that is, allow the probability of a Type I
error to increase. Because of the importance in this area of computer simulation validation,
we hope to develop other ways to muake these tests more powerful against a wide range of
alternatives while still permitting them to provide acceptable levels of confidence in their
results,
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SMALL SAMPLE TESTS IN SUPPORT OF COMEAT MODELING
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ABSTRACT: THIS HANDOUT/REPORT HAS BEEN PREPARED FOR THE CONVENIENCE
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COMBAT MODELING. THESE TESTS HAVE EXACT QUANTILE DECISION CRITERIA
FOR SMALL SAMPLE DATA SETS. THIS IS THE USUAL SITUATION FOR LARGE,
COMPLEX ,MANPOWER RESOURCE INTENSIVE AND TIME CONSUMING FORCE-ON-
FORCE MODELS. HOPEFULLY THIS APPLICATION PAPER WILL PROVIDE A REF-
ERANCE THAT WILL GIVE SOME OF THE COMMON (AND EVENTUALLY THE UNCOMMON)
STAYISTICAL DECISION CRITERIA APPROPRIATE FOR SMALL SAMPLES. POST- -
HOC/MULTIPLE COMPARISON TECHNIQUES WILL BE PROVIDED WHERE AVAIL-
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B. H. BISSINGER

INTRODUCTION. The calculation of variability for our procursment problem
variable is of the utmost importance to the Navy supply lynﬁon. Afcer all,
ie is pivotal in setting safety lavel. It appears some of our best savancs
have taken a crack at this and the history seems to point out that ome should
discinguish among the following:

Models

Mathematical Statistics

Approximations
A change in any one of these may, and apparently does, affect tho variance
caleulacion. |

This new approach avoids the problems others have zun into,

In the appendices ars fundamental formulae, a careful acatistical analy-

sis to be heedad, and a history of thoss attempts to solve this proeblem,

THE RICTURR. First, lset us look at a simple, but typical, constant s{itua-
tion. Suppose:
L » leadtime « 5 quarters
TAT = turn-around-time = 2 quarters
D » quarterly demand = 4 units
B = regenerations per quarter = 2 units

Then our net Z = procurement in s leadtime is:

2= (L)(D) - (L)(B) + (B)(TAT) or
= D(TAT) + (D-B)(L-TAT)

@20 -10+4 8 +0=1h




Hers is a picture drawn by CDR L. Atkinson:

e

Let's look at a similar situation where L, TAT, and D are tha same but B Ls

anrca:oé to 3. Then Z = 20 - 1§+ 6 = 8 + 3 = 11,

| ________________l |

A similar detsrainistic portrayal vas given by CDR T. Bunker as follows:

At

HEXCOoOX»

—~
Lm y ey TIME

L
These mnemonic heuriscic diagrams are fine if used properly to set up the

relevant indeterministic expressions.

THE MACHINERY. Llet r, = recovery rate and r, = repalr rate so that
r,r, is the percentage (decimal equivalent) of replenishment, and hence,

l-r,r, = actrition rate.

From the just discussed and pictured process (model) we can write the




procurement problea variable as:

Z=2 <23+ 7

whare
i
z‘ - D
=1 !
L
Z, =rry 3 Dy

T
2y =55y L Dy
{=]l
The variance of 2 is

1 3 2 2
Gy = ,zx + 'za + vz‘ - 2 COV (zt.za) + 2 Cov (zt.z‘) - 2 CoV (zz.z,)

First let ug compute the three variances:
£z, (L) = Luy V(K(Z, {L)) = ppol
V(z, IL) = Loy E(V(Z,|L)) = mep
LOVAR Z = urel + m oy
Obviously, since zz - a cunstant times zl.
R Z = rie] (e +uy ).

Also, since 2, is the sane as zl except for T replacing L, and has the same

constant multiplier as za,

1.2 1, 13
VAR 2, = t,¥, (Mpop + Mpoy)




L L
Next the 2 COV (Z ,2,) = 2 cov [ Lgl D, r,r, 1§1 ":.]

L
-Zr‘r’vn[ T N
{=1

=2rrx, [“L'; + “;':.’

L T
The 2 COV (z‘,z‘) - 2 COV 1§1 D, LT, ’El °1]

~2rr [:(g nk)(.}:: ob . n;ul.pr]

Now B [(? n,)(i; n.) L,T ] - L1 [l (n’p] - LT (o] + up)

Assuning L and T are independerit, ve get the above to be:

uypy (op + )
So the 2 COV (z‘.z') becones:

2 ke, (imloy + ) - Appyi]
=2rr, "L”‘l’l’)

The third covariance tera follows sasily from the above and we havc:
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2 GOV (Z,,2,) ~ 2 r:t: “L"r’;

So, comblning all six terms we get:

F 2 3 2.3 1 3 2
VAR z - oy + bp?y, + r‘r’ [“L’D * MDOL]

+ eyry lugey + oyl

21,5, gl + el

+2r “‘L"‘l(’; + A;) . Ilhﬂrl

-2rrx, “‘x.“r"; + A;) - ll;ﬁ_l‘,l

- et i) + el

+ 5%, [ngep *+ upogl

+ 25, laaep]

AT A
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2 2 2 2
= (- Ingoy + myol

2 2 2 2 2
+ rxtz [pTaD + pnarl

+2rr, (1-1x1,) [“LPT”;l

This last formula is a model builder’s dream. It has highly desirable

properties. First, note the coefficients add up to unity,

2 2.2
(1 - rlrz) + 2 rlrz 1 - rlr:) + rlrz
2
- ((1 - rxtz) + (txtz)] -1

So they may be considered weights attaching importance to the factors they
multiply. Next, numerical values for the various factors are easily avail-
able and anyone can onsily‘ctlcula:n the total expression.

Then it has sort of a group symmetry in that it i{s invariant under the
transformation sending L to T, T to L and r,r, to 1 - r,r, and vice versa.
Molecular chemists and physicists go into ecstasy over such formulas as they
say it shows strength.

Each term has meaningful sense as you read it. There is a fraction of
the variance of leadtime demand, a fraction of the variance of turn-around-
time demand, and an interaction term to make up the rest.

Let’'s say r,r, = .9 which I am told is not unrealistic. We get back into
service 908 of what we bought after repairing. Then 1l - rrc,- .1 and our

coefficients becoms:
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.01l ou variance of leadtime demand
.31 on variance of turn-around-time demand

.18 on the Lnglrlction of che shove two

It makes sense to put mest of yeur weight on thact which is most active. The

{nteraction term can be written as
2 (x5, (upopy + (1 =2, 7))

vhich is like an association index.

IIBALE. Procass should alvays come first, like in Management Science
policy should precede procedurs. I owe much thanks to J. Boyaraki who,
after suffering with the historical presentations as I went through them,
impressed me with the Markov closed loop process ve have here and stressed
the systeas sngineering aspects. I finally gave up on fiddling with what

sverybody else had done and started from scratch. It looks like it paid eoff,

Finally ve ses this is a true generalization of the consumable model in
that Lf re, - 0; 1.e., no repairables, ve find the correct expression for a

consumable.
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APFENDIX A

Certain random variable expressions arise in the computations for the
variance of the procuremsnt problem variable regardless of the model. Here

we give them and their variances,
1. In assuming the quarterly demands are L{.1.d we compute the variance
of the randon variable sum of thea as
L
VAR lgl. DL - “;’:. +» u.LC;
Ocherwise, we would have mors complications. For example, if ve assumed that

succeasive demands had correlation p, then an additional term of the form

(g e

would appear, thereby increasing the variance. We know the variance of a
mean of correlated variables cannot be deiven down by increasing sample size.
As it is, ve are assuning L and D ars independent,
2. Tor any two random variables x and y:
E(xy) = ey = Beby + ’xy “2°y
If x and y are independent, this reduces to

E(xy) = ey = Bghy

3. TFor any tvo random variables x and y:

3 )
*ay R (xy - B (x°Y))

- l ll 1
p 'y ”y x’y (1)

- - 2
p:, 2 p‘P’p’, (2)

+ cov (=*,.y") M
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For jointly normal with zero means cov (x?,y') = 2 [E(xy))?.

If x and y are independent this reduces to

| 2.2 21 3 2
’xy - p‘cy + uyot + O‘OY (4)

4, COV (k=,x) = k (VAR(x)) vhere k is & constant.
5. GOV (x, a-x) = -¢;.

6. In the UVICP formulation ve assume the number of units demanded each
time period (i) is a randva variable DL which is described by a fixed, known
frequency distribution and which is not autocorrelated. Also, it's assumed
the return-from-repair each time period ({) is a random variable Rt which is
described by a fixed, known frequency distribution and which depends on (is
cogrolatnd to) exsctly one obsarvation of demand, namely, the demand that
occurred a set turn-around-cime (T) prior; f.e., D, z. We run into the co-

variance of Dt and “1+1' To simplify it we further assume that:
By ~1 Dyx

vhere Pt is the return rate of the ({-.T)-th period times the survival rate

of the Lch period. Then we can write:
cov (Dt' .lil) - COV (Dl. ’1”1) -B (Dlrint) . (Dt) 4 (rini)

3 2
- B (r) x0}) - £ (P [R(D)]

-iog-t e

vhere va further assumed P and D are independent so that

E(R) = E(P) E(D)




or

70

NASA uses the following approximations for ¢

s 13 13
“:'y +* “y'x + 2 pu:uyc‘oy

w:‘c; + »;v; + O:G;)(l + o)
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APRENDIX B

There is an essential point to be made regardless of the model used. We
will {llustrata it by considering three different expressions which are al.
gebraically equivalent in deterministic algebra and also which have the same
first moments when we consider the symbols to be random variables and swicch
to the algebra of indeterminism. llovever, the second moments are not neces-
sarily equal and, bence, neither are the variances calculated therefronm.

First consider the elementary algebra identicy

X-2=0 (L)
Now consider the related-in-form random variable expression

X - X @

where x1 and x' are 1.,1,d, The mean of this rvendom variable expression is 0,
and so it appears there is no need to distinguish between (1) and (2)., But
the variance of (2) ia 201 vhiile the variance of a constant like 0 is 0.
Another simple example comes from taking X + X = 2X and then making the
varisbles random variables which leade to the contradiction 20; - Ac:.

Why all this very elesentary talk? Well, consider:

&
1 D (3)

£
D -
L]

=]

Then the variance of this i»

7 4 7 ) el & n)
wm(‘z1 D, - 1§1 b, """(&1 Py |+ (&1 L

a 3 3
= lop + 4oy = 110y (4)
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vhile {f ve use deterministic algebra first, viz,

} o, - Lo, -1
D, - 1 D, =% D
fmp L qap b st

! 2
VAR (&s n) - 3} (5)

So let us now consider three different expressions that exist in different

ve get

presentations of our procursaent problem variable. These thrse expressions

are algebraically equivalent in deterministic algstra. Here they are:

E T Lif E b

D, - Y D, = ¥ D, .=

=1 ' qel ¥ gap T gl L
(a) (b) (e)

It 1s easily seen that if we suddenly make Dt' L and T random variables and
any two D,, Dj are 1.1.d end L and D, are independant with L > T, chen the
wmean of (a), (b) and (o) ia

(- Hd

But the variances differ! Let us davelop the variance of (a).

£o -1
LeY « ¥ 0, - D
& @t ot

I(T‘ll..‘l') - ub - mn - (L - T)nn

o VAR {RCYIL D} = ap . 6y g (6)

Now VAR (Y, |L,T) = Lot + T8 (M

assuming the Dtl are 1.1.d.
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Then E(VAR (Y,(L,1) = L} + To} (®

S The variance of Y is the sum of (6) and (8),

VAR (V) = poly ny + Ciptiy) o

I2 we fuzther azsume L and T ars independant, then
8 , 1,18 3
VAR (‘l.) il (.L“‘l.') +* (;Armr) ° 9)

L-T
How about (b). lat ¥, = z Dyor
fwl

o = 3

T 3 = T \
- (L-T) e +Dip L+ o) {10)

Finally the variance of (¢), and we call Y, - (e), is

VAR Y, = Loy + Ble] + (T + 1)of + D'}, (11)
(n
The reader vwill notice several similarities and dissinilarities. Before
that, I call actention to the question mark under the plus sign in (11). Sone
places I have found a winus sign here! The varciances for (a) and (¢) are
siailar, the difference being minor and depending on integer versus contin-
uicy for T. Or the ocher hand, the variance of (b) not only has a factor

(L-T) on one term as opposed to (L+T) in (a) and (e), but it alse has an in-
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volved variance term which, heretofore, has been mysterinusly handled. I refer

1
to aD .

T

The point is that (a) and its variance are the correct approach.
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AEPENDIX. C

Back as far as 1963 when the PARS were being written (PAR I - Application
D, Operation 6 (Levels Computations for Repairables)) we find che formula for
the variance of attrition demand given to be

: Oh.cp = #3 + 0oy * 2 COV (£B,D) (L

vhere
D = quartaerly demand
r = avevage repair survival rate

B = carcass returm rate

a .
. 7¢B s broken down into the correct thres terms, based on independence

of r and B, namely,

-2 2

L 3
1'0"0'

-2 3
¥ o +o, 2)

(Ses APPENDIX A - formula (4)).
Further, assuming (a) that r is independent of B and D and (b) that the
RFI regenerations for a given quarter are a function of demand from a prior

quarter, the expression (1) reduces to

e+

> r.-z?cuva.n)

and quickly is added
cov (3,0) = § of °

Also, under the assumptions:
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(a) Demand during turn-around-time is independent of attrition during
leadtime less tuzm-around-time;

(b) Leadtime and turn-around-cime are independent,
the covariance of demand during procurement turn-around-time with attrition

during leadtime less turn-around-time {s given to be
© GOV (DT, (D-rB)(L-T) = -0} (B - T B))
Finally, the variance (Vx) of the procurement problea variable is given to be

3 ]
Y, = 00p * Cpurpy(r.ty * 2 OV (0T, (D-£B)(L-T)]
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ARZPENDIX D

It was in the mid-60s when we wvere writing the PARS that Peter Zehna
turned his attention to accounting for attricion during turn-around-cime,

He agreed with the others that we estimats from past history recovery rate
and repair race, say r, and ¢, and then R = 1 - rr, is the attrition rats.
Also, ve all assuned that L > T and cthat demands are mutually independent,

Iniclally we said the procurement problem variable 2 is to account for all
of the demands during a leadtime less the regenerations during that time, It
was computed by accounting for the demands during turn-around-time T and add.
ing che attricions during leadtime less turn.around-time. 2Zehna objected on '
the grounds that this iamplicitly assumed that regenerations for a given lead.
time are a function of demands during the leadtime less turn-around-time.’

. He proposed what he said vas mors realistic and computationally simpler.
He suggasted we assume that regensrations are a function of the demands that
occur during turn-around-time T. These regenerations are available for issue
during the leadtime L and occur at a rate LT, Hence, they can be expressed

2
as the random variable

T
LT D
% L 0 wj

So the procurement problem variable can he written

3 T Io+ I
Z- ¥ D, -rr I D e I D+ I D
g1 L Y8t Tt dgat (2

Using our ususl formula for the variunce of the randsam sum of random

desands, Zehna obtained:




o = W lngl + 4peD) + Gy oapdop + upley + o)

- o) lug - (1-RV)pg] + ay (o] + (142°)0})

In our usual notation for sample estimates this gives,

A
0; - -; [T - -2aH)T) + O* [-; + (1Y) "’rl

Let’s hold up here a minute and go back and rewrite (2) as:

2~ "1§1 D, + z 1§1D‘

Then

VAR 2 = VII.[? & 1] + VAR [ tgl Dt] + VAR tgl 01]

+2OOV[I£§ID£. &1»]
e 1-1 D'z—x ]

-zcnv[élnt 1=1 ]

Let us compute first the three covariances.
cov El D,. D ]
i=1 1—1
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T L .
I 0 x 1§1 °1] - Rupipi (8a)

kg

cov [n § D,, § °1]

t=1 L=1
T
=R VAR } D,
1=l
= R [ugop + pyo) (9a)
L T
o [ :§1 1 12'1 D‘]
L T
- K [ 1.-2-1 D, x £§1 D’.] . “Llhlﬁ; | (10a)

Nov let's combine (8), (9), and (10) as (8) - (9) - (10).

l[IEDx'fD]- I P 'c’-l[libxin]-o- 2
g2y 1% b Dy - MapapyRagsp-Ruey e TR T T

- & |(»-1) § D, x ;:' °1] + (LR - n{: - Mol
foel =]

..g(gf;+.;¢;) - - R VAR g‘:

vhere we assumed T and L independent.
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So altogether, by corract mathematical statistics, we obcaln'

AR 2 - B} ("T’; + y;a;] + “L'; + “;’; + “T'; + “;’;

© 2R (e + wpe)

- (13-21+1) [”T’; + p;O;] + uLO; + “;';
Separating this into two terms, one on ’; and one on u;, as Zehna did,

yields

VAR Z = [(R'-2M#L)ig + wylof + [0} + (R'-2R4L)0R1n]

= [y, + AR upled + (o] + (1-R)eR10]

We nrote this is very similar to Zehna's result (4). The difference lies

in the coafficiants

Qa-p)? ve 122
and

a-n? v 14

So we see that Zehna's coefficient on u,c; is negative and, hence, makes
a smaller coefficient. On the other hand, his coefficient on psv; is larger

by 2R.
In 1964, J. W. Prichard of BUSANDA Navy Headquartsrs (today NAVSUPR) pre-

sented a paper entitled "lnventory Model for Repairable ltems - Theory and

Practices."”
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He let z, w DL » BL + BT = DT 4+ (D-B)(L-T) be the randou variable of the
amount of material demanded in a leadtime by users and by the repair process,

but not satisfied by the repair process. The variance of zz becomes:

VAR {2, } « o;.: - o}b.') (L-1y * 2 GOV (DT, (D-B)(L-T)]

The last tu:m, which is -20; [B(B-i)]. {3 needed because of the obvious corre-

lation between gross demand during a turn-around-time and the net demand to be

met from purchase during that portion of the procurement leadtine in excess of

the turn-around-time. .
The other two terms in the expression for VAR {Z } can be expanded inco

the form for suas over a randoam interval of random demands, visz

oje = Toj + (D)o
-3y L1y = =T Lo + ef + 2 GOV (D,3)]
+ @-5)* (of + o)
The covariance term 2 GOV (D,B) is approximately equal to

kL

So ve end up with

vn{z.}-'i-g ('D-)‘a%i-(f.-‘-f) [¢5+ag- 2*—%]

+ @0 (e} + ¢}) - 2 D(D-Beg,
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Note that B is used here for rB in the PARS example. This same approach and

results vere used by J. Schnelker.
Here is a development by CDR Keith Lippert without the covariance term:

VAR {DXT + (D-r®’ )(L-T)] = V(DxT) + V(D-rB’')(L-T)

Do} + Top + (D-r3")'e}_p + (Lo,

- B

a; + .‘1-'33 + (n-n')'(o;n.’r) + (i-'r'n;_w

- 0; + c:,‘, assuning independence.

3
D-zn’
oia - J' . I. (28" - iy )  £(2) £(D ) dxdd?

- I N I (e'sd. 2B gy, + p.‘, p;,)!(l')!(r)drdl'
[ ] [ ]
- I * (3’ )2 £(xr)dr - I. 2ep_ul , £(r)dr + I - bl f(e)ar
[ ] h. [ ] g“.'

-k () B (%) - 2y, + ag,

- ool + m(e}, + ag,) - sy,

3
- o:_c., + c:_;;, + p:p;, (this follows from our APPENDIX A equation (3).

So in total for Z = procurement problem variable




V(2) - B‘c; + Tol + (D-r8*) (o] + op) + (L-T) [op + olo}, + oluy, + p:_.;,]

Compressing z3’ inte simply B, this becomas

i'a.; + -r¢; + (B-ia'cn; + .;) + (L-T) <¢; - a;)
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LATIN HYPERCUBE SAMPLING:
A WAY OF SAVING COMPUTER RUNS

W. J. Conover
College of Business Administration
Texas Tech University
Lubbock, Texas 79424

ABSIRACT. When real-life situations are modeled using a computer
program, the computsr program is fraquently very large and takes a long time
to make each run, In order to get the most information from a limited number
of computer runs, latin hypercube sampling was invented. The wide-spread
usage of latin hypercube sampling attests to its value in producing precise
eatimates of the output distribution parameters. In addition, a useful
method for inducing correlations among the input variables in simulations
is discussed,

»  The advent of high-speed computsrs has opened new
doors for solving difficult real-world problems. Computer codes are written
to simulate the behavior of the real-world situation, and then the codes are
run repeatedly on the computer to estimate the outcome under various
different circumstances, whare those circumstances are used as inputs to the
computer code, Unfortunately, these computer codes often becoma very complex
in an attempt to make the codes as realistic as possible, and as a result
they take s long to run on the computer that the nunber of runs is limited
by time and money constraints. Also, computer codes become more complex when
the number of different input variables increases.

Thus the following situation often arises. A complex computer code is
written that mimica the real life situation as well as one can expect from
any computer code., It contains many, perhaps hundreds, input variables or
parameters that can be varied to represent different circumstances that
should be considered, and it takes so long to run on the computer that only
a few simulation runs (say 20 to 100) are possible dus to time and money
constraints,

How is this possible? In sveryone's mind there's the feeling that the
number of runs must be larger than the number of variables. However, that
notion comes from solving systems of linear equations, and doss not apply
to computer runs. For example, one could simply choose a likely value for
each of the k input variables, and make a single computer run using these
values. Then one could use a differsnt set of values for the input
variables, perhaps representing a possible undesirable scenario, and make
a second run on thes cowputer. So k, the number of input variables, can bas
much larger than n; the number of runs.

The question then becomes, how should the various values of the input
varisbles he selected so as to get the most information, in some sense, out
of a limited number of runs? One approach is the deterministic approach,
wiich says to select particular sets of values of the input variables that
you, or someons else, want to examine for one reason or another., The output
of the computer code then applies to the scenarios represented by those sets
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of input values. There are obvious advantages to this approach, but the main
disadvantage is that few, if any, probability statements can be made, and
often any kind of post-hoc analysis is very limited,

A second approach is to ugse a monte carlo approach, and randomly select
values for each input variable, ons value at a time, and do the same for all
input variables. This assumes that each input variable has & known
probability distribution so a random selection may bs made., Than the output
is one random value of the output, By repeating the procedure several times,
several independent random observations are made on the output, and
estimates of the output probability distribution can be made. This method
is called random sampling. It allows for many different types of probability
statements on the output, or concerning the relative importance of the
various input variables.

A third approach, called latin hypercube sampling, is discussed in this
paper. lt has baen used for at least ten years by saveral national research
laboratories, notably Los Alamos National Laboratories and Sandia
Laboratories, It is used in at least 22 different countries for selecting
input variables in long-running computer codes, primarily for modeling
nuclear reactor behavior, and the bshavior of desp undarground nuclear waste
repositoriss. Inquiries regarding a computer code that facilitates its usage
should be addressed to Dr. Ronald L. Iman, Sandia Laboratories, Albuquerque,
(505)844-8834, who has gone out of his way in the past to make this program
available to prospective users,

The popularity of latin hypercube sampling is due to its characteristic
of having a relatively small variance, as compared with random sampling for
example, in the estimates of the output distribution. Thus the same types
of probability statements available from random sampling are also available
using latin hypercube sampling, but usually with much more precision,

One characteristic of most computer-
coded models with many input variables is that some input variables are more
influential than others in affecting the cutcoms. We would conceutrats our
sttention on the more influential input variables, if only we knew which
ones they were, But that ig often the purpose of the simulation, to find out
which input variables are the most influential on the outcoms.

If wa knev that the outcome was almost entirely dependent on one input
variable, say X;, then we would almost certainly want to select values of
Xy that span its entire range. In this way we could ses how the outcome
varies over the entire range of values of X;, and we would have a complete
plcturs of the model’s behavior. If we were allowed to make p runs on the
computer, we could divide the range of X; into p intervals of equal length
and select one value from sach interval for sach run. Some of the intervals
may be very unlikely to experience in real life, however, and besides that,
wvhat do we do if the range of X; is infinite? So it makes more sense to
divide the range of X; into p intervals of equal probability, rather than
of squal length, and randomly sample one value from each interval. Thus all
of the p values of X; carry the same welight, and no problem arises if the
range of X; is infinite.




The problem is that we don't know, before running the code, which
variable is the most important., Furthermore, in many situations there is
more than one output from the model, and while X; may be the most important
input variable for output Y;, say, another input varisble X, may be the most
influential input variable for another output Y,, say, Or if the output ia
a function of time, cne input variable may he the most influential one at
an early point in time, while another one may be the most influential one
at a later point in time. In fact this is the rule more than the exception,
How do we handle this situation?

One obvious solution is to treat both X; and X, with equal
consideration., Stratify over the entirs range of X; to obtain the n values
of X9 as described above, and in a sinmilar manner stratify over the entire
rangs of X, to obtain the n values of Xy for the p computer runs, Then how
do we decide which values of X; tu palr with the values of X, in the various
computer runs? The approach used in this section is simply to pair them in
a random manner, as variables would be paired in real life if they were
independent of each other. In the next section a method of pairing is
discussed, to achisve a desired correlation hetween X; and X;. But for now,
random pairing is used.

0f course it now becomes obvious what to do if a third input variable
X3 is also important. Stractify over the entire range of X; to get the g
input values for Xj, and do a random permutation of those p values to match
them with the (Xj, X7) pairs already established., A similar treatment can
be made of all of the input variablea. In that way if one of them turns out
to be very important, it has been treated with importance by stratifying
over its entire range, If it turns out that one of the input variables s
of little or no importance in influencing the output, nothing is lost using
this procedura since all of the influential input variables are stratified
over their entire range. Including this unimportant variable neither aids
nor inhibits the amount of information obtained from the other variables.

Intuitively this seems like an officient method for gatting the most
information out of a limited number of computer runs, but how good is it
really? In an attempt to answer this question several different sampling
plans were compared using reel computer codes, by McKay, Conover and Beckman
(1979), Iman, Conover and Campbell (1980) and Iman and Conover (1980). In
all cases the output parameters were e¢stimated with much more precision
using latin hypercube sampling than with any of the other proceduras
examined, and the improvement was dramatic. This does not imply that there
are not better methods for selecting input variable, or that this same
dranatic improvement will be evideant for all types of computer codes. It was
true for the codes we examined, when compared with random sampling and a
different form of stratified sampling.

One disadvantage of latin hypercubs sampling is that even though the
estimates are very precise, no measure of the precision is available, as it
is when using random sampling. The solution to this problem lies in
replicating a latin hypercubs sample several times, For sxample, if a total
of 100 runs is allowed on the computer, first use 10 runs, or 20 runs if you
prefer, for a latin hypercube sample, where each variable is stratified over
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10 (or 20) intervals. Then repeat the procedure for another 10 runs, again
stratifying over 10 intervals for each variable, but of course the
individual values are unlikely to be the same as before, and the randonm
matching of one variable with another is unlikely to be the same as befora.
By repeating this procedurs until the total number of runs is exhausted,
several independent estimates of the output are obtained, whers aach
estimats has the precision one can expect from latin hypercube sampling, and
the group of sstimates together provide an estimate of that precision., This
variation of latin hypercube sampling is explored by Iman and Conover
(1980), and as one would expasct some precision is lost by this combination
of latin hypercube sampling and random sampling, but the benefit is in
obtaining a measure of the precision in the form of a standard deviation of
the estimate. The new level of precision is somewhere between pure latin
hypercube sampling and pure random sampling.

\/ »  Thus far it has been tacitly
assumed that the input variables are mutually independent, and therefore the
population correlation matrix is the fdentity matrix I,

100 ... 0
0 1 ° [ B ] 0
1= 001 ... 0
000 ... 1

The sample correlation matrix, the matrix of sample correlation coefficients
representing the actual correlation of the selected input values for the
various input variables, will be closs to I, with differences dus solely to
sampling variability.

Often the input variables in a computer code represent variables which
in real 1ife are correlated, If the input variables in the computer code had
a sample correlation close to the real corrslation between those variables,
the reault would be a more realistic simulation, with more believable
results, How can we match the input variables so that the matching is no
longer random, but rather contrived to achieve a target correlation? The
method described in this section shows how to achisve a target rapnk
correlation, which may be the closest we can come to achieving a target
correlation due to the possibility of long-tailed input distributions where
outlying observations dominate the regular correlation coefficient, but have
minimal effect on the rank correlation coefficient. Recall, the rank
correlation coefficient, called Spesrman’s correlation coefficient, is just
the regular correlation coefficient computed on the ranks of the
observations. See Conover (1980) for a complete descripcion of rank
corrslation.

An example can help describe the concept., Suppose n = 15 runs are
authorized on a model with k « 6 input variables. Thres of the input
variables are mutually independant, and the other three are highly
correlated. The population correlation matrix C looks like this.



10 (or 20) intervals. Then repeat the procedurs for another 10 runs, again
stratifying over 10 intervals for each variable, but of course the
individual values ars unlikely to be the same as before, and the random
matching of one variable with another is unlikely to be the same as before,
By repeating this procedure until the total number of runs Ls exhausted,
several independent estimates of the output ars obtained, where each
estimate has the precision one can expect from latin hypercube sampling, and
the group of sstimates togsther provide an estimate of that precision. This
variation of latin hypercube sampling is explored by Iman and Conover
(1%80), and as one would expect some precision is lost by this combination
of latin hypercube sampling and random sampling, but the benefit iz in
obtaining a measure of the precision in the form of a standard deviation of
the estimate. The new level of precision is somevhere between pure latin
hypercube sampling and pure random sampling.

TABLES. Thus far it has been tacitly
assumed that the input variables are mutually independent, and therefore the
population corralation matrix is the identity matrix I,
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[ ol [ KR

The sampla correlation matrix, the matrix of sample correlation coefficients
represanting the actual correlation of the selected input values for the
various input variables, will be close to I, with differences dus solely to
sampling variability.

Often the input variables in a computer code represent variables which
in real life are correlated. If the input variables in ths computer code had
a sample correlation close to the real corrslation betwean those variables,
the result would be a more realistic simulation, with more believable
results., How can we match the input variables so that the matching is no
longer random, but rather contrived to achieve a target correlation? The
method described in this section shows how to achieve a target rank
correlation, which may ba the closest we can come to achieving a target
corrslation due to the possibility of long-tailed input distributions whare
outlying observations dominate the regular correlation coefficient, but have
minimal effect on the rank correlation coefficiont. Recall, the rank
correlation coefficient, called Spearman's correlation coefficlent, is just
the regular correlation coefficient computed on the ranks of the
observations. See Conover (1980) for a cumplete description of rank
corrslation,

An example can help describe the concept. Suppose n = 15 runs are
authorized on a model with k = 6 input variables. Three of the input
variables are mutually independent, and the other three are highly
correlated, The population correlation matrix C looks like this.
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Xy X2 X3 X4, X5 Xg

|1 0o o o o o
X | O 1 0 0 0 0
C= X310 9 1 0 0 0
X% |0 / 0 1 .75 -.70
Xg | O 0 o .7% 1 .,95 ,
X¢ | O 9 ¢ -.70 -,95 1 ;

Each input variabla has 15 values, obtained by using the stratification
procedure described for latin hypercube samples. If the 13 values for each
input variable are permuted randomly the sample correlation matyxix might
look like this.

X1 X X3 X4 X5 Xg

X1 {00 IO .47 -.23 26 .17
X, | .10 1.00 -3 .07 .48 ..23
Tw= X3 -.47 -31 1,00 .34 -,20 .19
X4 | =023 .07 .34 1,00 -.04 -.03
xs 026 .48 ‘020 '004 1000 .05

x6 017 --23 119 '.03 .05 1000
e -

-

Ths matrix T shows how random correlations may differ from the taryet
valus of zero, and sometimes the differsnce is fairly large. In this case
the target correlations #re given in the matrix C. How can one obtain
correlations, albeit rank correlations, close to the ones in C?

If the values of the input variables are permuted so that their
agres with the following rankings, then their rank correlation
coefficients will be given by the rank correlation matrix M, given below,

Run Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
X155 3 5 13 14 9 2 8 10 6 1 7 11 12 4

Ranks of Xo15 6 12 8 5 1 4 3 7 9 13 2 11 10
Variables X3 5 10 4 7 14 1 2 8 13 6 12 15 2 11 9
X, 2 1 15 10 11 8 9 6 12 3 13 35 W 7 4

X 1 3 15 12 13 10 5 6 1 8 9 2 7 11 4

Xe 15 13 1 2 7 8 11 12 3 6 4 10 9 35 14

Xy xZ X4 X4 Xs x5

X [ 2,00 .02 .05 .04 .22 -.08
Xy .02 1,00 -.06 .08 -.01 -.05
M= X, .05 -,06 1.00 -,08 ,05 -.11
X4 .04 .08 -.08 1.00 .73 -.70
Xs .22 -,010 ,05 .73 1.00 -.89
Xg | -.08 -.08 ..11 -.,70 -.89 1.00




Note how cloce the rank correlations are to the targat correlations
given above in the matrix C. Even the correlatiors aiming at the value zero
come much closer to zero than the random correlations in the matrix T. Thus
sven if the input veriables are independent, one may prefer to use this
procsdurs to obtain neaxly orthogonal (in the sense of ranks) input vectors,
rather than telyiug on random matching which may produce, by chance,
correlations quite far from the target valuss of zero, as shown in the
matrix T.

It 1is necessary for the nunber of runs g to be larger than the number
of variables k* for which correlations are being designated, in order to use
this procodure. Note that k* may be lass than the total number of variables

.

One advantage of using the cank correlation coefficlents bacomes
spparent. The ranks, when paired as they are above, always result in the
rank correlation matrix M, no matter what the original numbers are, and
therefors no matter what the margina. distributions might be. Thus this
method of 4inducing rank correlations is fres of any distributional
assumptions regarding the input variables,

Although we are using this method of inducing correlations in
conjunction with latin hypercube samples, it is in no way tied to latin
hypercube sampling. It works equally well with random sampling, or any other
vay of obtaining values for the input variables. All that is required is a
rearrangement of the input values so that their ranks agres with a
prescribed set of ranks, in order to obtain a rank correlation matrix close
to the target rank correlation matrix.

Of course the big question is, how does one obtain the prescribed set
of rankings for any given rank correlation matrix, as given above for the
matrix M? As you would expect, the method is not simple. It can be done by
hand, but the Sandia computer program is recommended for convenience, since
it takes the difficulty out of the procedure. For those who are not afraid
of matrix manipulation, the procedure is as follows,

1, Start with any set of n numbers, called scores, where g is the
nunber of runs. We usually use normal scores, which are the {/(n+l)
quantiles from a standavd normal distribution, i = 1, ..., n, which are
readily available from any table of the standard ncrmal distribution
such as that in Conover (1980), Denote those scoros by a(l), ..., a(n).

2. Form a matrix R with k* colunns in it, where aach column contains
a random permutation of the 1§ scores, and whure k* represents the
number of input variables being corrslated. Be sure all permutations
are distinot,

3. Find the sample correlation matrix T of R. Note that T is the
regular correlation matrix, not the rank correlation matrix. However
it is & charactaristic of normal scores, and normal random variatles,
that regular correlation coefficients and rank correlation coafficients
ere usually quite similar.




4, Find a matrix Q such that QQ' = T, where Q' denotes the transpose
of Q. Mathematicians have devised several methods for finding Q. The
one that we use is the Cholesky factorization scheme, which results in
a lower triangular matrix for Q.

5., Let the targat correlation matrix be denoted by C. Find a matrix P
such that PP! = C, Again. we use the Cholesky factorization scheme
because of its relative simplicity.

6, Find 8§ = PQ'1 and compute R* = RS'. The ranks of the matrix R* (one
‘colun at -a time) are thie ranks we ars seeking. Any set of input
vactors with the cams ranks as R* will have &« rank correlation matrix
close in value to target correlation matrix C.

Why do¢s this work? First, the regular sample correlation matrix of R*
is C. This 1a a simple result that can be shown with a little matrix
algebra, Second, because ws started with normal scores, the rank correlation
cosfficients of R* are usually numerically close to the regular corrolation
coefficienta, given in €. Therefore any mcrix with the same ranks as R
will have the asame xank correlations as , which should be close to C.
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GRAPHICAL TOOLS FOR EXPERIMENT DESIGN

Russell R. Barton
School of Operations Research and Industrial Engineering
Cornell University
Ithaca, New York 14853

ABSTRACT

Graphical methods for designing experiments have been used since the inception of
statistical experiment design, yet this approach has received little recognition in the
licsrature. This presentation surveys historical uses of graphical displays and shows how
graphical representations can clarify the difference between a bad design and a good one.
Some practical rules for generating new designs by graphical means are presented.

KEYWORDS: Experiment Design, Gruphical Methods




I. INTRODUCTION

How can graphical tools be used in the process of designing an experiment? First,
consider the steps involved in experiment design. One can think of this process as
composed of five steps, These must occur bufore any data are collected, and before
statistical analyses are performed. They are:

1, define the purpose of the experiment,

2, identify the independent, intermediate, dependent, and nuisance variables,

3, classify the variables as quantitative or qualitative, linear or nonlinear effect
(independent variables), and fixed or varied during the experiment (independent
variables),

4, using the above information, choose or create a design, and

S, validate the design.

This paper presents graphical methads for steps 2, 4, and § of this process, For step 2,
we will show Andrews and fishbone diagrams. Multidimensional point plots and a
variety of other techniques can be used in step 4. For step S, we will discuss graphical
properties of good designs, and the importance of checking projections,

Because of the high graphical content of this presentation, the format of the following
paper is unconventional, Its form is more like that of an oral presentation, with figures
placed on the left side of each page, and the accompanying text on the right (opposite
each figure) !, This allows approximately sixty figures to be discussed in thirty pages,
which might otherwise have taken twice the space.

1 The following pages coms from a session entitled "Practical Graphical Techniques for the Desiy: and
Analysis of Experiments” presented by James Filliben, Gerald Hahn, and this author at the 1987 American
Statistical Association Winter Conference in Orlando, Florida. These figrues are more complete than the

Army Design of Experiments presentation in most ways, although some recent material was presented in
Monterey that is missing here.
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VIEWGRAPH

1
\
Q Practical Gm'phk.::lt Techniquues

or thw
Design and Analysis of Experiments

Russell R. Barion
James J, Filihen
Gerald J. Hahn

PART 1: GRAPHICAL DOX
PART 2: GRAPHICAL ANALYSIS

PART 3: RECENT APPLICATIONS

©, ~
“WE EMPHASIZE THAT THE SEL ECTION OF THE MATRIX OF
EXPERIMENTAL POINTS REPRESENTS ONLY THE
PROVERBIAL TIP CF THE ICEBERG. THEREFORE,

WE STRESS SUCH MATTERS AS THE NEED FOR CLEARLY
DEFINING TH& GOAL OF THE TEST PROGRAM,
ENUMBRATING ALL POSSIBLE VARIABLES, AND HOW

TO HANDLE THEM. *
-Q.J. Hahn

*WHAT |8 THE CBJECTIVE OF THIS INVESTIGATION 7*

«J.8, Hunter
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TEXT

* OVERVIEW OF A THREE PART TALK
« ABOUT 20 MINUTES PER SECTION

» BEGIN WITH GRAPHICAL METIIODS
FOR DESIGN--NOT JUST FOR VIF\WING
DESIGNS, BUT FOR DESIGNINC
DESIGNS.
P G e I A IR

1+ WHY GRAPHICAL METIIODS?

it >provide better understanding of design .
>make it easy to generate n new design

Sy
it

|
i
b

1
K

BT
s

>provides a fayout to run the design from

o~ Mt

R G .
» START FROM A BROAD CONTEX'T"

WHAT ARE THE EVENTS LEADING
TO THE NEED FOR AN EXPERIMENT?

* Why s the experiment necessary?

» What is known about the systern that is being
investigated?

» ~hatare the KEY VARL:.BLES:
Independent
Dependent
Intermediate

¢ Anticipated complexity of relationships?
* Known constraints on:
variable/factor values
experimental procedure
¢ What is the expected outcome?
¢ Why use GRAPHICAL methods?

right-brain, creative
powerful, robust
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Pigure 3.8 Coust-and-ailont disgrom fur webihling (Wenersion snslyolsl

TEXT

What do we mean by GRAPHICAL designs?

Andrews used representations that were
graphic indeed!

They convey more than just the combingtiong
of factor levels that will be mied, trivgering
the viewer's imagination to think hout the

often important details as well 18 the min
structure (cf viewgraphs 53&54)

At the first level of experiment design, one
needs to view the process that will ke
investigated, This viewgraph shows the
representation Andrews used to plan
experiments for a meat processing operution,

Source: Andrews (1964),

-/
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Ishikawa's “fishbone" dlagrams: quicker to
draw, help to identify appropriate
experiments to try.

Several forms:
cause-effect
process-oriented
clustered lists

A process-oriented diagram for the axle
manufacturing problem would be organized
to have the major process steps on the
backbone, with subprocesses hanging off
these, etc. Causes of wobble would tend to
be the outermost 'bones’ on the 'skeleton’

Source: Ishikawa (1982).
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®, <

Qutline

What graphical tools exist to aid in designing experiments?
What graphical concepts do these tools exploit?

What are the strengths and limitations of graphical methods?
What role can computers play in graphical DOX?

Summary - the place of graphical methods In DOX

@ 13.1 A LIST OF CONSTRUCTION METHIODS )

The following methods of constructing fuctoriul designs
literature:

(i) Orihogonal arrays.
{ii) DBalanced srsays.
(iii) Latin squares and orthogonal Latin squares,
(iv) Hadamard matrices.
(v} Finite geometries.
(vi) Confounding.
(vii) Group theory.
{uiii) Algebraic sreompasitian.
(ix) Cumnbinatorial topology.
(s) Foldaver,
(zi) Collapsing of levels.
(xii) Composition (direci product and direct sum),
{xiii) Codes.
{xiv) Dlock designs.
(xv) F-squates,
{xvi) Weighing designs.
(xvii) Lattice designs,

TEXT

The following pages show graphical methods
to address specific kinds of designs, e.g. fac-
torial, lifetest, etc.

Greatest concentration on multidimensionat
point plots for factorial and fractional
designs. Reason: the ratio

practical value

current use

Basic outline of the DOX portion of this taik
is at left.

(xviii) Finite graphs.
\ (212} Oune-at-a-time,

————
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Graphical methods for DOX not recognised
as an entity historically. Computerized
literature search gave ZERO titles, keywords

in past 10 years with both GRAPHICAL and
DOX.

Source: Raktoe, et. al. (1981).

Sy 4 1T ABN Wyt
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7 :
O ") THE MAIN POINT: itis easier io
understand, manipulate and create experiment

designs when they are representcd

"Definition 13.1: A txn matrix A with entries| graphically. Mathematical descriptions can
from a set S of s symbols is called an be precise, sometimes clear. rarely ensy to
orthogonal array of size n, t constraints, s manipulate.

levels, strength d, and index A if any dxn

submatrix of A contains all s? possible dx1 .
column vectors based on s symbolg of S | Source: Rakioe, et. al. (1981).

with the same frequency A."

-Raktoe, Heydayat, and Federer

. _/
@ 1 T e vt | N\ First volume, first paper in chhnomc_trics,
e ¥ Srareh & 4 ter e primary journal for examples of graphical
" d) Cnivwtohmiran & 5 trmior pails, DOX.

# Cobe | Coloetolhmionn 4 @ crnier prinda.
n C-MM—&O-“M.-+-WML

’ Several important concepts that will occur
/i again in later viewgraphs:
1

ez s

/t.-—— - 1) designs decompose into subsets

= 2) vertices of regular polyhedra make good

/] /:_; 7_’—/}:—2 ? point subsets

- 3) use of point symbols to add information

. to the plot
om 'L/""' source: DeBaun (1959).
. ﬂ-u'"m
& cwrtasowy
\_ J

294



.

C GRAPHICAL DESIGN OF EXPERIMENTS -- R. BARTON )

VIEWGRAFPH

1o fowme Ve fortann
. ———————
9 0

295

TEXT

Multidimensional point plots are most
common graphical DOX tool.

Examples here show factorial point plots for
one-, two-, three-, and four-factor designs.

Source: Andrews (1964).

Another application, some minor variations in
presentation form. Dashed lines help locate
face-centered points.

Source: Myers (1985).
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CHANGE ONE CHANGE TWO
VARIABLE VARIABLES
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TEXT

Youden: No scientist, when presented with
these designs graphically, would prefer the
one-at-a-time version on the left.

Aesthetic property apparent herc: span the
design space. Will return to this again later,

Source: Youden (1972).

Tamen .
Program foe (hrog mrinkirs, (we with (here chrwon, one Wik inn cbaeer,

Verinlies z [ X
s 2 X

r v ¥ y [] z

] z 2 -2

Six pein y 7z '
1 2 3 4 8§ & 1 -1
. &£ ¢t £ X X

vy s ¥ g ¥ |4 ' b4
(I AN 2 D T 1 -1 1

Alwnve roeflicients are asigh.
ing fnelnen Lo estimale  « 5

296

Youden's approach to representing an in-
complete design, circa 1962:

ATABLE

Source: Youden (1962).
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X

VARIARLES ¥ AND ¥
AT 3 LEVELS: 2
AT 2 LEVELS

® CHAMGE ONE
VANIABLE AT a
TIME

O CHANGE TWO
VARIABLES AT
A TIME

PROBLEM: SELECT MQOST INFORMATIVE

Sin POINTS FROM 18 POINT SPACE
Tres Sun Camerions of auttunis fos s i oustes w0 mby = (hons veswbdes

O,

’
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Finitan 2—T'rajention of 2471 ints theee 2° (netorinla.

297

TEXT

Youden's choice for representing the same
design, circa 1972:

APLOT
Plot gives visual hints to confounding potern
that can be used not just to dispfay designs,

but to create them as well.

Source: Youden (1972).

Box and Hunter used graphical models of
designs, and studied their projections to find
ones with "balance”.

Scurce: Box and Hunter (1961).
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O,

Hunter used multidimensional point piots
(with appropriate reference lines) to illus-
trate many common designs.

Here, graphical representation i {or
analytical use -- the designs had atiends been
created.

Source: Hunter (1985).

h L "

FPOEE D Vet g bumey \tes Sueth € g 40 }* fewentd 194 Q0 T* " Ittt aremnd S lanuhedng
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ottt A 130 g 28 hap § % § 9 9 hase s - ‘
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16
O ) Plots used effectively to illustrate fractional

design for an industrial application. This and
two following viewgraphs show fractional
factorial plots from recently published
applications.

Shading here used to identfy each of the two
half-fractions.

Run order shown inside bubbles.

Source: Snea (1985a),
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Here the actual factor levels are used to label
a 2*! design.

Source: Andrews (1964).

Developing and understanding a graphical rep-
resentation for the design can later be aug-
mented to display the results of the experiment.

Bubbles of this 2! design show outcomes of
experiments.

Extension: use a symbol that conveys both
location AND spread at each design point when
design includes replication (or is an inner-
outer design a-1a Taguchi).

Source; Snee (19855).

So (ar, shown designs displayed graphically to revesl pro-
perties. That is, plows used DESCRIPTIVELY. How to use
grephical methods to GENERATE DESIGNS for particular
applications? READ ON «-eee.. —>

J

(most graphical references use plots for analysis or
presentation, not for design generation)
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O

» 1 is proved (Appendix 1) that If a polynomial of any
dagree d, is fittad by the method of least squares over any

region of interest A in the kvariables, when the true
function is a polynomial of any degree d, > d,, then the bias

aversged over A Is minimized for all values of the
coefficients of the neglected terms, by making the moments

of order d,+d, and less of the design points equal to the
corresponding moments of a uniform distribution over A"

- G.E.P. Box and N.R. Draper

TEXT

HOW TO GENERATE DESIGNS
GRAPHICALLY:

PRINCIPLE #1

(i.e. spread points out uniformly over space)

Source: Box and Draper (1959).

®

*.. convenient 1o regard designs as built up from a number
of component sets of points, each sat having its points
equidistant from the origin ..."

*... lorm the vertices of a regular polygon, polyhedron, or
polytope...”

- Box and Hunter (1957)
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HOW TO GENERATE DESIGNS
GRAPHICALLY

PRINCIPLE #2

(if whole design too complex, use divide-
and-conquer strategy to design smaller
components to be combined -- see viewgraphs
30 and 31)

Source: Box and Hunter (1957).
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VIEWGRAPH TEXT
21
/ "\ HOW TO GENERATE DESIGNS

GRAPHICALLY
PRINCIPLE #3
Covamoncmaacacaces

*Choose new points to MAXIMIZE the minimum

. - . - (this consideration arises from “optinel”
distance from all existing design points.. design considerations -- min variance for first

order model terms)

Source: Kennard and Stone (1969).

-Kennard and Stone (1969)
- - J
@\
_/ )
Last point, used extensively by Box and
SOME USEFUL CONCEPTS Hunter, was mentioned earlier.

for Bcnerattn
GO0 ’DESIG S
rom
MULTIDIMENSIONAL POINT PLOTS

1 COVER THE DESIGN SPACE UNIFORMLY

2 DECOMPQSE COMPLICATED DESIGNS INTO
GRAPHICAL SUBCOMPONENTS

3 SPA DESIGN SPACE:
IGN POINTS FAR FROM
EXISTING POINTS TO MINIMIZE VARIANCE
FOR FIRST ORDER EFFECTS

4 CHECK PROJECTIONS TO PLANES
AND LI

301
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23
O e ——
T
0 10 » 0
yeassk{N+a){P)+ £ => BALANCED
14,000
12,000
[ 44
1.000
€.000 » >
w
. yegsa(PT)+a(TP)+ ¢ = UNBALANCED
Y _
24 _/ ~
: ‘:oEJ ,’:G I:I] ,-_:;-EI
" U 06 0 O
RO ¢ noes nocxs morxs
o U 00 V3 D
BLOCKED DESIGNS FROM
80X, HUNTEN & HUNTER,
k_ {(ppl39-341)

iy

TEXT

Box and Draper findings above give some
mode! independence.

BUT using graphical methaods to generare
designs does not free us from the fact:

DESIGN GOODNESS DEPENDS Ot 'THE

TRUE FORM OF THE MODEL BEING
INVESTIGATED.

Source: Satterthwaite (1959).

To illustrate multidim. point plots for design,
first show a 3-factor experiment to be run in
4 blocks of 2.

Decomposition, projection, and spanning
(points 2, 3, &4) used to generate good design
here. (Decomposition is of cube points into 4
sets of antipodal pairs).

Block effects confounded with main effects in
bad design seen from top and rear projections.

The relative merits of these two designs much

easier to see here than in their original (non-
graphical) description.

Source: Box, Hunter, and Hunter (1978).

[
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26

- — T

- A 3M o'i li
* o

|
@‘ - @

d

s
A 2 Fectorial Design
fol 4000k toyout: foriore W lesters, Mewds fo Mostel

TEXT

This figure shows a multidim. point plnt for
a 2’ factorial design. The blocks for the
design above (blocked designs from BH&H)
set in a row rather than a square because
additional structure here not present ahove.

Example: block effect (1+4)-(2+3y wonld
appear as an "interaction” pattern iere, while
an equivalent pattern, (1+2)-(3+4) wouls
have a main effect pattem.

- O S

® S Y

INTERACTION MAIN EFFECT
PATTERN PATTERN

These plots and those to (ollow are easy to generate and
manipulate using a Macintosh (MacDraw ©). Pro- jections
are NOT automatic, thouph.

L
A 2 Faclorist Design

1
.

Knd

Figure at left can be used as a template for
designs with 7 or more factors.

Fill in subset of dots at small cube vexgicu to

generate an incomplete or fractional 2° design.

Use two dot symbols,e.g. ® R
fora2’ design.
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VIEWGRAPH

a

A 2'3" PFactorial Design

2-way interaction patterns

TEXT

Can do multidimensional point plots for "3
designs, too.

Compare with Youden plot earlier. and
viewgraphs 31-34.

1:ahetabergaendig

304

Second example from literature is a 27> frac-
tional factorial. Next three viewgraphs
illustrate the three designs presented in the
reference.

Value of "minimum aberration” designs is
consonant with graphical design principles.

For 2 designs, use decomposition and idea
that best fractions span the space: best point
allocation, therefore, is based on three way
interaction pattern.

Reference: Fries and Hunter (1980).
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tmga cube
warilces

ravien ° ot rloe r_

small cvhe
vetticns

B

II::[]:.‘.,.- -_.«L%II) ! 9

(13

)

TEXT

Identical small-cube forms denoted by
circles.

Good large-cube pattern.
Poor small-cube pattern - can be fixed.
All projections can be visualized without

much trouble.

Reference: Fries and Hunter (1980).

. Sl E Y s
o~ —3: -
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THE MINIMUM ABERRATION DESIGN

Pattern here is good; still some flaws - the
choice of the particular 2*small-cube pattern
has a 2-way pattern on the large cube, and two
way pattern separates levels of f based on
levels of d (I=defg).

At this point, can only push confounding
around; not enough design points to fix.

Reference: Fries and Hunter (1980).
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VIEWGRAPH

31

7

e DESIGN

TEXT

Minimum aberration and incomplete block

examples were from academic literature.
This example from RCA, industrial research
problem. Design was generated graphically,
as shown here, for an experiment in 1982,

3 2
Full factorial wasa2 3 .

Designed a 1/2 fraction.

Source: Barton (1982).

[# V18]

Sobadd 2

ER Y M
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The 1/2 fraction was composed of three pieces,
following DESIGN PRINCIPLE #2. Easy to
see (and to design) this way.

Note: numbers represent run order, which was
modified in final design.

Source: Barton (1982).
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VIEWGRAPH TEXT

"\ BOX-BEHNKEN DESIGN

Illustrates use of icons for complicated multi-
dimensional point plots:

o : 4‘ .

=~
payd
—_— ="

-

e -
E T Y B
-

’-: b Reference: Box and Behnken (1960).

M0
¢ AL 1
L L33

-~ 33 ==

Easy to generate altemnative fractions using the
icons; Bad Barton at left.

Some properties of both designs immediately

obvious:
no center
no extreme vertices (violates #3)
f
Other properties (like why Bad-Barton is bad)
/ not obvious without projections.
e
A
bt < »
éég d » e 4 49
' o “"oe e
iz )
¢ "4 Ht 1 ]
¢ Al S

Bad . Barton 3' Feactlonal Design 307
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35
/ "\ Multidimensional point plots for factorial
designs allow intuitive modifications to
FERTILIZER TRIALS - TWO POESIBLE DESIENS Incorporate constraints on the design space.
DESIGN 1 BESICH 7 Snee (1981) gives rules used by CONSIM to
" NN 1 P place mixture design points on boundaries
i Rl GRS caused by constraints. First example in this
—— e - RGeS presentation of "mental graphics”,
N, ) )}
= } \Qﬁi
e . . 3
s | . Source: Snee (1985b).
< v . Wt
L SERTILIZER ) "o I
NGRS 2 Vprmter Trmmassloe S oumie Duwgre: bowwn o Loves of foeh Forums- o Muisly s Dongn @ #n my
Lopas o oworen
- Y.

36
% N
| iy For many practical problems, constraints are
o . few enough to allow visualization-

,
AR Nt

-and better control of the design.

Source: Kinzer (1985).

Fepoe 8 W.ﬂnbh—-ﬂ»‘mm
—ﬂ-‘ww’-nl-«-lu-q

30¢
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©:

- KINEHC SIUDY OF 0-XYLLHE DXIDATION

A’gf\vl
_4& N
8011 \

m
7 |- ~_.

FXPERIMIMNIAL REGION

M /

TEMPERATURE *X)
~

260'//
P A
20 49 40 80 10 ©

OXYGIN CONCENIRATION

FIGURE 6, Ortho-Xylene Oxidulion Kinetic Study—Ex-
parimentol Region is Defined by Two Nonparallel Plones

in Thren Dimensions { lyusole, Bacon, rind Downie (1972)). J

38

TEXT

Another example showing constraints
limiting the experimental region.

Note: complex constraints may snggesta
transformation to the model factors.

Source: Snee (1985b).

FACTORIAL
MULTIDIMENSIONAL
PLOTS

SUMMARY

Multidim. point plots are useful coricepts even
when they can't actuxlly be drawn. Fry [] uses
"mental graphics” to construct fractional-2 3 -
designs from hypersphere designs composed
of multiple sets of 2 designs.

Why factorial (hypercube)?
answer: limits # of factor levels, easier to do
math, plot results, and view design in
2-D, 3-D, etc.

NEXT SECTION REVIEWS SPECIAL
METHODS FOR. RESP. SURFACE /EV(CP

309
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TEXT

In an early EVOP worksheet, multidim. point
plots for design were part of the data
collection worksheet.

Graphical design provides layout to tun the
experiment from,

Source: Box and Hunter (1959).
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A simplex plan that is updated as runs are
completed-can be used to choose the next run
point.

This is graphical sequential design.
Easier if superimpose contours of model fitting

a recent subset of observations; see next
viewgraph.

Source: Hahn,Bemesderfer,and Olsson (1986)

e
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VIEWGRAPH

O,

FINSE W TiImMT IR

TEXT

Here the model is not a polynomial in the
usual (Taylor approximation) sense, but
Hardy's [] interpolation function.

Source: Barton (1985).
Reference: Hardy (1971).

A {4 11 terrew
FIIIMY 2.0, Tane (1 m) part (1, me| shmples tetike sreangravente. m = ) toud m = t

Above trajectory was for a Nelder-Mead
simplex sequential optimization strategy.

-- Here are simplices of a different sort for DOX:— -

simplices arising from mixture experiments.

The next few viewgraphs review graphical
representations that have been used to create
and analyze mixture designs.

Source: Comell (1981).
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Figure 4. Three-Component Mixture System With
Singfe Component and Muluple Component Con-
straitnts J

TEXT

As for factorial designs, point plots can be
used to idendfy subregions for study.

In addition to the usual mixture constraint.

most real mixture problems have additional
requirements that limit the design space.

Source: Koons and Wilt (1985).

312

e R R T AT R e, 2 L 1

More complicated constraints yield irregularly
shaped regions.

Snee's XVERT program depends on the
geometric concepts of edges, vertices, and face
centroids to select "good" design points.
Again, this is "mental graphics”, since a
graphical image is used, but it is not actually
drawn.

Source: Snee (1981).
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O,

oo 2, !mmo—wﬁ-lmm
X

TEXT

Four factor mixture experiments and
constrained subsets can be drawn effectively,
and have been used in industry.

Source: Hare (1985).

NOMOGRAMS
and other

GRAPH PAPER
GRAPHS

This ends material on multidimensional point
plots for DOX.

Nomograms and graph paper graphs are
practical tools for DOX, but they are not in the
spirit of earlier material. Only a brief sample
hetgc to illustrate the kind of advantages they
offer.




(_ GRAPHICAL DESIGN OF EXPERIMENTS -- R. BARTON _ )

VIEWGRAPH

@

Fig. 3. Tha design bncvw for tha funetinn £1€,3 0-7, B 2) wilh (he optimal anlulinn
wliraiod hy heavy dota.

A graphical aid lor D-oplimal design
{Box 8 Luces, 1959)

TEXT

Graphical technique here is one step removed
from design. It represents a mathematical
function of the design structure.

Source: Box and Lucas (1959).
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This nomogram allows experimenter to choose
sample size required for desired accuracy of the
slope coefficient.

Source: Beech
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VIEWGRAPH TEXT

Like a nomogram, this graph is used to show
the variance of maximurn likelihood estimates
as a function of design parameters.

The model here is Arrhenius; design
parameters are test temperatures and test
time. Censored observations are expected.

Source: Nelson and Kielpinski (1975).

Because design properties are displayed
raphically, it is possible to optimize other
lesign properties (i.e. other than variance of
estimates) by making graphical additions!

e W .1

Example: minimize the maximum test
temperature without exceeding a variance limit.

Source: Barton and Nelson (1987).
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31

NETWORK
DESIGN
REPRESENTATIONS

TEXT

Like the nomograms and graph-paper
graphs, the network design representations to
follow are one level removed from the

design.

Because of this, expect that they will be less
useful for design synthesis.

blocks freatment
. levels

ME IEATMCNYE AN E
connate 2 e o MAMNS
Eq1MAnY e O NECIED
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These plots, due to Butz, relate connectivity to
estimable contrasts.

For small examples, these plots can be used to

set up and evaluate designs for ANOVA
models.

Source: Butz (1982).
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TEXT

Taguchi uses "linear graphs” to expose

- confounding patterns in fractional designs.

They appear useful for choosing a defining
reladon that yields a desired confounding
pattern.

Method of construction: unknown

Source: Taguchi (1980).
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Cuthbert Daniel's method for displaying
confounding patterns is more difficult to see
(for me). Used to analyze rather than generate.

Source: Daniel (1962).
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TEXT

Graphical representations of hierarchy help to
develop nested designs for mixed and
random effects models.

Andrews was particularly graphic.

Source: Andrews (1964).

A simpler, perhaps less informative
representation of the same design. This form
has been used by several authors.

See also: Leone,Nelson,and Johnson (1968)
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57 ~

What graphical concepts do these
tools exploit?

Design Balance/Symmetry

Design Projections

"Face" Incidence of Design Points
Network properties: connectedness,
etc.

Analog Computations

B WM

(8}

What are the strengths and limitations
of graphical methods?

+ Flexible
» make tradeoffs visually
* incorporate constraints graphically

+ Robust

+ Uses powerful computer - human eye

+ Graphical DOX methods easy to use &
remember

- Non-quantitative
- Dimensional limitations

\— J

319
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1

What role can computers play In graphical DOX?

Make descriptive tools into prescriplive ones
*rapid piotting of alternative designs

TEXT

Of course, computers play other roles in DOX,
e.g. DETMAX. Here we mean getting
computers to help with the plotting,
projections, views, etc.

*axhaustive plots of alternative designs for scanning

Interactive graphics
+raal time design manipulation

~computed design properties updaled and displayed
Rule-based systems to manipulate geometric or network objects

3 LEVELS OF 0 DCNOTED
m 8Y 0, 0, ANO A

Prownn §ivuign Condgquraibun, Foompls (,

320

o e+ e .
S e e Pa N, T T

Even for DETMAX applications, graphical
methods resorted to for understanding and

evaluation.

Source: Mitchell (1974).

T T M £ Rt .
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el

Summary - the place of graphical methods in DOX
1 Graphical: Investigative, creative

2  Mathematical, Computer-Aided: confirmatory

O

NEXT:

GRAPHICAL
ANALYSIS

321

TEXT

Examples of graphics shown here aren’t meant
to be prescriptive; graphical DOX as a distinct
entity is too new.

This selection represents useful methods to
trigger your own imagination.

Try to find useful ways to handle designs with
many factors.

USE YOUR RIGHT BRAIN
(and may the force be with you!)

Reference: Box (1984).
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